

Rapport de stage de fin d'études

Licence Sciences et Techniques

Eau et environnement

L'étude des impacts des interventions d'exploitation d'eau sur l'environnement au sein de la RADEEMA-Marrakech

Réalisé par :

Chafik Meryeme

Zahid Halima

Encadrant: Parrain:

Pr A. Ait Addi (FST-Marrakech) Mr A. Abbid (RADEEMA)

Soutenu, le 16 juin 2015 devant le jury composé de:

Pr. Hanich L. (FST-Marrakech)

Pr. Ait Addi A. (FST-Marrakech)

Année universitaire: 2014/2015

Dédicace

Ce mémoire est dédié à :

Nos chers parents CHAFIK Slimane, WARRAK Zahra, EL ALLAM Fatima et ZAHID Mohammed qui nous ont supportées, soutenues, ont toujours cru en nous, et ont mis à notre disposition tous les moyens Nécessaires pour que nous réussissions nos études.

On ne saura les remercier pour tout ce qu'ils ont fait, Que dieu les récompense pour tous leurs bienfaits. A nos sœurs et nos frères A nos enseignants A nos chers (es) amis (es) et collègues

Remerciements

La réalisation de ce mémoire est le produit de contribution de près ou de loin nombreuses personnes.

Nous remercions le professeur Ait Addi Abdellah pour ses conseils, ses explications pertinentes sans oublier son suivi de près des étapes d'élaboration de ce mémoire.

Nos remerciements sont également adressés à notre encadrant

À la RADEEMA Monsieur ABBID Abdessatare Chef de division «Conduite réseau »au Département « Exploitation eau » pour l'aide et les conseils du Suivi de notre travail. On tient à remercier tout particulièrement et à témoigner. Toute notre reconnaissance à Monsieur LAHBABI Younes Chef de Département « Exploitation eau » pour l'expérience enrichissante et pleine d'intérêt qu'ils nous ont fait vivre durant ce mois et pour L'accueil et la confiance qu'il nous a accordés dès le début de stage. Nos vifs remerciements à tous nos professeurs du département des Sciences de la Terre de la Faculté Sciences et Techniques de Marrakech, et pour l'enseignement qu'ils nous ont assuré le long de notre cursus.

Sommaire

Introduction	9
Chapitre I : présentation de la RADEEMA	11
I.1 Historique de la RADEEMA	11
I.2 Activités et objectifs de la RADEEMA	11
I.2.1 les principales activités de la RADEEMA	11
I.2.2 les principaux objectifs de la RADEEMA	11
I.3 Cadre juridique et institutionnel de la RADEEMA	11
I.4 Organisation de la RADEEMA	12
Chapitre II : présentation de l'étude	15
II.1. Présentation de la zone d'étude	15
II.1.1 Le contexte topographique	16
II.1.2 Contexte climatologique	16
II.1.3 Le contexte géologique	16
II.1.4 Le contexte pédologique	17
II.2.Présentation du réseau de distribution d'eau potable de la ville	18
II.2.1 Réservoirs de stockages existants	18
II .2.1.1 Réservoir 50 000 m3 de Sidi Moussa	18
II .2.1.2 Réservoir 55 000 m3 de la route d'Ourika	18
II.2.2 Réseau d'eau potable	18
II.2.2.1 Réseau ramifié ou étoilé	18
II.2.2.2 Réseau maillé	19
II.2.2.3 Caractéristiques du réseau	20
II.2.3 fonctionnement du réseau	20
II.2.4 Les équipements	21
Chapitre III : L'étude d'impact environnemental	25
III.1.Recensement des activités d'exploitation d'eau potable	25
III.1.1 Présentation de département d'exploitation d'eau	25
III.1.2 les activités de département d'exploitation d'eau	26
III.1.2.1 Service exploitation feeders et réservoirs	26
III.1.2.2 Service conduite réseau	26
III.1.2.3 Service normalisation et mise à niveau	26
III.1.3 Les interventions	27
III.2. Etude d'impact environnemental	28
III.2.1 Définition général d'étude d'impact	28

III.2.2.L'évaluation des impacts environnementaux	28
III.2.2.1 les impacts environnementaux des activités	29
III.2.2.2 méthodes d'évaluation des impacts environnementaux	29
III.3. L'évaluation des impacts d'exploitation d'eau	33
III.4.Résultat d'évaluation des impacts environnementaux	34
III.5. Plan d'action	37
Conclusion générale	38
Références bibliographiques	
Annexes	

Abréviations

ONEE : Office National de l'Electricité et de l'Eau Potable

RADEEMA : Régie Autonome Distribution Eau assainissement Électricité

Marrakech.

PE: Polyéthylène.

PVC : Polychlorure de Vinyle

BP: Béton Précontraint

AC: Amiante Ciment

FD: Fonte Ductile

FG: Fonte Grise

EIE: Etude d'Impact Environnemental

NGM: Niveau Général du Maroc

DEE : Département Exploitation Eau

DN: Diamètre Nominal

Liste des figures

Figure 1 : Organigramme général de la RADEEMA	13
Figure 2: Sites visités sur le plan de la ville de Marrakech (http://maps.google.com)	15
Figure 3: situation du Haouz central dans son cadre géologique régional (Razoki, 2000)	17
Figure 4 : Schéma d'un réseau ramifié	19
Fig. 5 : Schéma d'un réseau maillé.	19
Fig. 6: A- Exemple de ventouse, B-Vanne, C- Modèle de stabilisateur utilisé dans le rés distribution d'eau, D- Exemple de modulateur utilisé pour compensation des pertes de d'eau, E- Modèle de bouche d'incendie, F-Regard d'eau potable sur la route	charge
Figure 7: L'organisation du département d'exploitation d'eau	25
Figure 8: Modèle de l'évaluation des risques	30
Figure 9: Exemple de calcul de la criticité	31
Figure 10 : Graphique de PARETO	36

Liste des tableaux

Tableau 1 : Avantages et inconvénients des différents types de conception	20
de réseau de distribution d'eau	20
Tableau 2 : Caractéristiques du réseau de distribution (RADEEMA, 2014)	20
Tableau 3 : les interventions d'exploitation d'eau potable	27
Tableau 4 : Impact environnemental de chaque phase d'intervention	29
Tableau 5 : Barème d'évaluation des impacts environnementaux	32
Tableau 6 : Fiche d'évaluation des impacts environnementaux	33
Tableau 7 : Tableau de PARETO : Criticité et % cumulé selon les impacts environneme	entaux35
Tableau 8 : Plan d'action des impacts significatifs	37
Tableau 9 : Plan d'action des impacts non significatifs	38

Introduction

L'environnement au Maroc connaît une dégradation constante et les ressources naturelles s'amenuisent régulièrement : pollution de l'air et des eaux déforestation, érosion éolienne et hydrique des sols, désertification, la biodiversité menacée, liée aux activités industrielles, économiques Par conséquent, le Maroc a développé un certain nombre de lois et des normes pour réduire cette dégradation notre projet s'intègre dans cet optique.

Notre étude a pour objectif l'analyse des impacts environnementaux des interventions du département d'exploitation d'eau. Nous aborderons ce sujet selon les approches suivantes :

- Recensement des activités et les interventions du département d'exploitation d'eau.
- Evaluation des impacts environnementaux à partir d'un barème d'évaluation.
- Dresser un plan d'action pour diminuer l'effet de ces impactes sur l'environnement.

Chapitre I:

Présentation de la RADEEMA

Chapitre I: présentation de la RADEEMA

Introduction:

La RADEEMA est une régie autonome de distribution d'eau potable et d'électricité et gestion d'assainissement liquide.

I.1 Historique de la RADEEMA :

La Régie Autonome de Distribution d'Eau et d'Electricité de Marrakech a vu le jour en janvier 1971 après la disparition de la SMD : Société Marocaine de distribution.

La RADEEMA est un établissement publique à vocation industrielle commerciale doté de la personnalité civile et de l'autonomie financière.

La régie assure la distribution d'eau et d'électricité au sein de la ville de Marrakech, à cela s'ajoute la gestion du service d'assainissement liquide depuis 1998.

I.2 Activités et objectifs de la RADEEMA

I.2.1 les principales activités de la RADEEMA

- Satisfaire les besoins des abonnées en eau, électricité et assainissement.
- Assurer la distribution d'eau et d'électricité à l'intérieur de la ville.

I.2.2 les principaux objectifs de la RADEEMA

- Sauvegarder les ressources en eau potable.
- Améliorer le système de distribution d'eau potable à la ville de Marrakech, et lutter contre son gaspillage.

I.3 Cadre juridique et institutionnel de la RADEEMA

L'assise juridique de cet établissement publique à caractère communal, doté de la Personnalité civile et de l'autonomie financière repose principalement sur :

- Le Dahir n° 1-59-315 du 23 juin 1960 concernant les collectivités locales
- Le décret n° 2-64-394 du 29 septembre 1964 relatif aux régies communales dotées de la personnalité civile et de l'autonomie financière ;

- Le règlement intérieur en date du 31 décembre 1970.
- Le Dahir n° 1-03-195 du 11 novembre 2003 portant promulgation de la loi n° 69-00 relative au contrôle financier de l'Etat sur les entreprises publiques et autres organismes.
- Le Dahir n° 1-02-124 du 13 juin 2002 portant promulgation de la loi n° 62-99 formant code des juridictions financières.
- Le règlement des marchés de la RADEEMA
- Les Cahiers des charges d'exploitation des services de distribution d'eau et d'électricité et de l'assainissement liquide;
- Le statut du personnel des entreprises de production, transport et distribution d'électricité
- Le décret du 1èr Ministre 2-89-61 du 10 rabie II 1410 (10 Novembre 1989) fixant les règles applicable à la comptabilité des établissements publics, BO N° 4023 de 6 jornadah I 1410 (6 décembre 1989).
- La Régie est administrée par un Conseil d'Administration et un Comité de Direction.
- L'ensemble des services de la RADEEMA sont gérés par un Directeur Général.
- Le Conseil d'Administration est composé des élus et des représentants des Ministères de l'Intérieur et de l'Economie et Finances

I.4 Organisation de la RADEEMA :

Il existe quatre directions à la RADEEMA, qui sont les suivantes:

Direction ingénierie et investissements, direction clientèle, direction administrative et financière et direction Exploitation (Fig. 1).

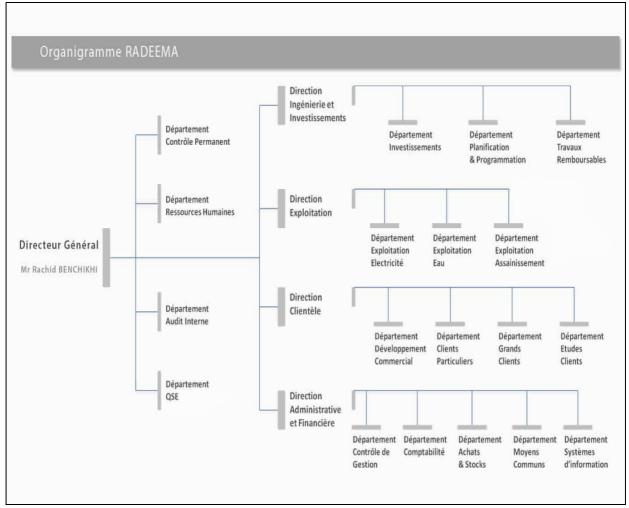


Figure 1 : Organigramme général de la RADEEMA

Conclusion:

L'alimentation en eau potable à Marrakech est assurée par l'ONEE comme producteur et la RADEEMA comme distributeur.

Après la connaissance de la mission principale de département exploitation eau, le chapitre suivant présentera le système d'alimentation d'eau potable.

Chapitre II:

Présentation de l'étude

Chapitre II : présentation de l'étude

Introduction:

Ce chapitre permet de connaître les principaux facteurs de l'environnement de la ville de Marrakech et aussi le système de distribution d'eau potable.

II.1. Présentation de la zone d'étude :

Marrakech compte 928 850 habitants, d'après le recensement de 2014, répartis sur une superficie de 230 km2. La densité de population atteint les 350 habitants à l'hectare dans la Médina. C'est la quatrième plus grande ville du Maroc après Casablanca, Fès et Tanger. La ville est divisée en deux parties distinctes : la médina ou ville historique (dix kilomètres d'enceinte) et la ville nouvelle dont les quartiers principaux s'appellent Guéliz et Hivernage, Douar Askar, Sidi Youssef Ben Ali, M'Hamid et Daoudiat (Fig. 2).

Figure 2: Sites visités sur le plan de la ville de Marrakech (http://maps.google.com)

II.1.1 Le contexte topographique :

L'agglomération de Marrakech est située dans la plaine du Haouz centrale limitée par le massif du Haut Atlas au sud et celui des Jebilet au nord.

Le site de la ville de Marrakech est une plaine uniforme s'inclinant doucement selon une pente d'environ 8% orientée du Sud-Est vers le Nord-Ouest depuis la cote 460 NGM (Est de l'aéroport) jusqu'à la cote 380 NGM (Oued Tensift). Les seuls reliefs sont constitués par les Jebels (collines) de Gueliz et de koudiat al Abid.

II.1.2 Contexte climatologique:

La zone de Marrakech se situe dans l'étage bioclimatique semi-aride, caractérisé par des précipitations peu abondantes et mal réparties dans l'espace et dans le temps et partout inferieurs à 300 mm. Les contrastes de températures sont remarquables en raison des variations diurnes, saisonnières ou annuelles

II.1.3 Le contexte géologique:

La plaine du Haouz se développe entre les chaines du Haut Atlas au Sud et le massif des Jebilets au Nord (Fig. 3). Elle est formée sur un substratum paléozoïque essentiellement schisteux et imperméable, couvert par une série sédimentaire marno-gréseuse continentale d'âge miocène, recouverte à son tour par des dépôts alluviaux graveleux quaternaires (Razoki, 2000 ; Fig. 3).

Ces dépôts quaternaires proviennent de l'érosion des roches de l'Atlas, charriées par un réseau hydrographique à régime torrentiel. Ces dépôts détritiques, emballés dans une matrice souvent argileuse sont caractérisés par leur extrême hétérogénéité. Les collines calcaires de Jebel Guéliz et Koudiat al Abid sont les seuls reliefs de cette plaine, et appartiennent au socle paléozoïque.

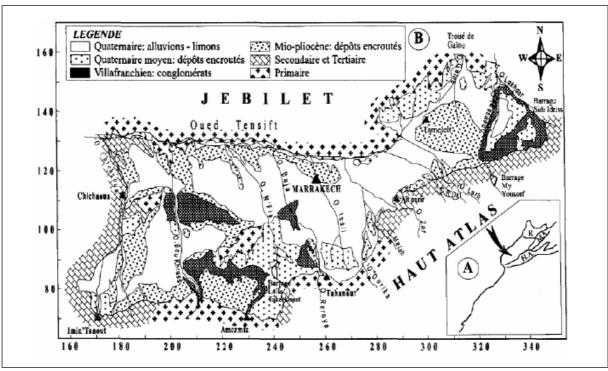


Figure 3: situation du Haouz central dans son cadre géologique régional (Razoki, 2000)

II.1.4 Le contexte pédologique:

Dans la région de Marrakech deux types de sols sont déterminés, selon leur aptitude aux cultures irriguées :

- ♣ Cône du N'Fis (Ouest de Marrakech) : sols bruns steppiques, de texture limoneuse et connaissant une salinisation généralisée. Ce sont des sols de mauvaise qualité qui devaient être abandonnés à la pratique pastorale.
- ♣ Cônes de l'Ourika, de Rérhaya et du Zat (pourtour Est et Ouest de Marrakech) : ces sols bruns rouges par leur texture sablo-argileuse, sont très favorables à une agriculture irriguée.

II.2.Présentation du réseau de distribution d'eau potable de la ville:

Un réseau de distribution d'eau est un système sous réglementation provinciale mis en place pour distribuer l'eau et composé de réservoirs, conduites et équipements.

II.2.1 Réservoirs de stockages existants:

Un réservoir est une construction destinée à entreposer l'eau, et placée en général sur un sommet géographique pour permettre de la distribuer sous pression.

Au niveau du réseau de la distribution de la RADEEMA,

Il existe deux réservoirs.

II .2.1.1 Réservoir 50 000 m3 de Sidi Moussa:

Le réservoir 50000 m3, situé dans le complexe hydraulique Sidi Moussa, sur la route d'Ourika, alimente l'étage haut service de Marrakech.

La parcelle, sur laquelle le réservoir est construit, comprend actuellement trois cuves semienterrées indépendantes en béton armé, deux de capacité de 12 500 m3 et un de capacité de 25000 m3.

II .2.1.2 Réservoir 55 000 m3 de la route d'Ourika :

Le réservoir 55 000 m3 est situé sur la route d'Ourika, dans la zone touristique de Marrakech. La cuve de ce réservoir est constituée de sept cellules indépendantes.

A partir de ce réservoir prennent départ les deux conduites principales de distribution de l'étage bas service.

II.2.2 Réseau d'eau potable :

Il existe deux types:

II.2.2.1 Réseau ramifié ou étoilé:

La caractéristique d'un réseau ramifié est que l'eau circule, dans toute la canalisation, dans un seul sens (des conduites principales vers les conduites secondaires, vers les conduites tertiaires). De ce fait, chaque point du réseau n'est alimenté en eau que d'un seul côté (Fig. 4 et Tab. 1).

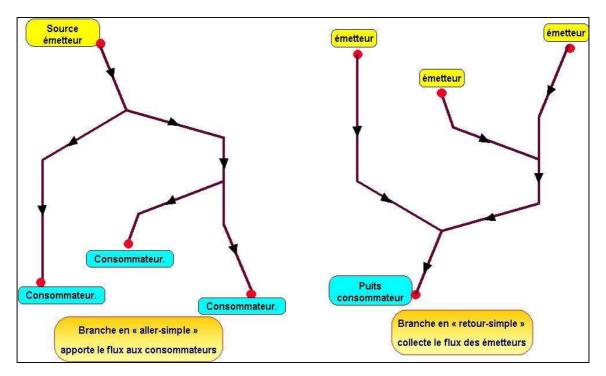


Figure 4 : Schéma d'un réseau ramifié

II.2.2.2 Réseau maillé:

Le réseau maillé dérive du réseau ramifié par connexion des extrémités des conduites (généralement jusqu'au niveau des conduites tertiaires), permettant une alimentation de retour. Ainsi, chaque point du réseau peut être alimenté en eau de deux ou plusieurs côtés. Les petites rues sont toujours alimentées par des ramifications (Fig. 5 et Tab. 1).

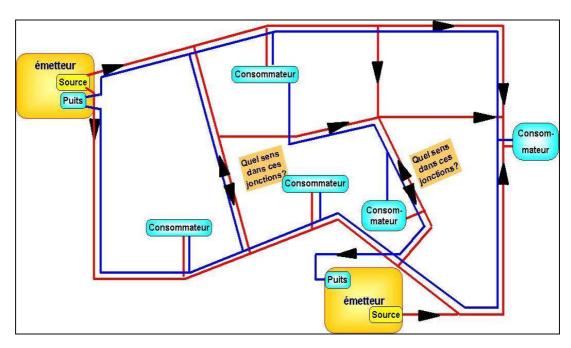


Fig. 5 : Schéma d'un réseau maillé.

	Réseau ramifié (Fig. 4)	Réseau maillé (Fig. 5)
avantages	Plus simple et plus économique.	-Il ya plusieurs trajets possible entre le réservoir et le point d'alimentationla sécurité d'approvisionnement est beaucoup plus grande puisque les consommateurs aval peuvent être alimentés.
inconvénients	-Il ya un seul trajet possible entre le réservoir et le point d'alimentation. -priver d'eau de tous les consommateurs en cas d'incident.	-plus couteux, plus complexe.

Tableau 1 : Avantages et inconvénients des différents types de conception de réseau de distribution d'eau.

II.2.2.3 Caractéristiques du réseau :

Le réseau de distribution d'eau potable de la RADEEMA est constitué de conduites en six matériaux (Tab. 2): le polyéthylène PE, le PVC, le béton précontraint BP, l'Amiante ciment, la fonte ductile et la fonte grise.

Nature	PE	PVC	ВР	AC	FD	FG	Total
Linéaire en km	229,4	1503,9	55 ,8	718,2	15 ,9	35,7	2558,9
%	8,96	58,77	2,18	28,06	0,62	1,39	100

Tableau 2 : Caractéristiques du réseau de distribution (RADEEMA, 2014)

II.2.3 fonctionnement du réseau:

Afin d'alimenter la ville de Marrakech en eau potable, le réseau de distribution est subdivisé en deux étages.

- L'étage haut service : est alimenté à partir du réservoir Sidi Moussa 50 000 m3. Il est décomposé en quatre secteurs hydrauliques: Medina sud, Sidi Youssef Ben Ali, M'Hamid et Zone touristique Agdal.
- L'étage bas service : est alimenté à partir du réservoir L'Ourika 55 000 m3. Il est décomposé en quatre secteurs hydrauliques : Un grand secteur

Bas service (comprenant les secteurs interconnectés de Massira, Gueliz, Daoudiate, Medina nord et Route de Fès) et les secteurs de Route Targa, Zone industrielle et Route de Casablanca.

II.2.4 Les équipements

Ce sont des accessoires de système de distribution, composés de :

- *ventouses.
- * vannes.
- * vidanges.
- * stabilisateurs.
- * poteaux d'incendies et les bouches d'incendies.
- *regards.
- Ventouses (Fig. 6A): placées sur tous les points hauts d'un réseau, sont nécessaires pour permettre l'évacuation de l'air emprisonné dans les conduites et pour éviter la dépression des conduites lors des incidents avec coupure d'eau. Il existe presque 779 ventouses à Marrakech (RADEEMA, 2014).
- ❖ Vidanges : réalisés sur les points bas d'un réseau ainsi sur les branches terminales du réseau, permettent de vidanger la conduite pour réparation des fuites. Le diamètre de vidange doit être égal au ¼ du diamètre de la conduite. Dans Marrakech il y a presque 631 vidanges (RADEEMA, 2014).
- ❖ Vannes (Fig. 6B): il s'agit de dispositifs qui servent à contrôler le débit de l'eau. c'est l'équivalent d'un robinet, parfois utilisée pour des appareils de petites dimensions, montés sur des canalisations. il y a plusieurs types de vannes : vanne à papillon, vanne à opercule et vanne à soupape. Sur la canalisation d'eau potable sont fixé 2216 vannes (RADEEMA, 2014).

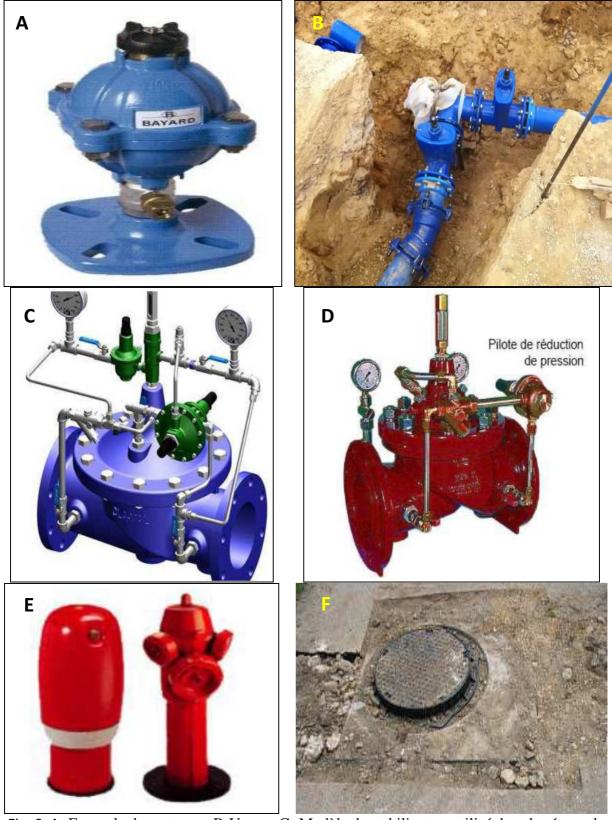


Fig. 6: A- Exemple de ventouse, B-Vanne, C- Modèle de stabilisateur utilisé dans le réseau de distribution d'eau, D- Exemple de modulateur utilisé pour compensation des pertes de charge d'eau, E- Modèle de bouche d'incendie, F-Regard d'eau potable sur la route.

- ❖ Stabilisateurs de pression (Fig. 6C): c'est une vanne conçus pour décharger l'excès de pression dans un système de fourniture d'eau et sert à maintenir la pression de système à un niveau ne dépassant pas une valeur maximale prédéterminée. Il existe deux types de stabilisateurs : réducteur pour réduire la pression pendant le jour, et modulateur (Fig. 6D) pour compenser les pertes de charge de façon très souple en période de forte consommation et respectivement en période de faible consommation. Il existe presque 12 stabilisateurs sur la canalisation d'eau potable (RADEEMA, 2014).
- ❖ Poteaux d'incendies ou bouches d'incendies (Fig. 6E) : sont des dispositifs de lutte contre l'incendie, permettent d'alimentation les sapeurs-pompiers. destinés à l'alimentation, à l'irrigation ou l'industrie. Il existe presque 270 poteaux d'incendies de DN 100mm, et 47 bouches d'incendie de DN100mm (RADEEMA, 2014)
- ❖ Regards (Fig. 6F) visitables nécessaires à l'entretien et éventuellement en démontages des divers appareils sont exécutés en maçonnerie, en béton armé ou en éléments préfabriqués et ils sont fondés en général à même le sol. Les types de regards sont de section circulaire ou carrée respectivement de 1m de diamètre ou 1m de côté ou minimum.

Conclusion:

Afin d'alimenter la population de la ville de Marrakech en eau potable la RADEEMA fait la disposition de maintenance du réseau de distribution, cette activité génère des interventions.

Chapitre III:

Etude d'impact environnemental

Chapitre III : L'étude d'impact environnemental

Introduction:

L'objectif de cette partie consiste en l'évaluation des impacts sur l'environnement des interventions relatives à la maintenance des infrastructures de l'approvisionnement en eau potable de la ville de Marrakech. Plusieurs sites ont été visités avec un recensement de leurs activités.

III.1.Recensement des activités d'exploitation d'eau potable :

III.1.1 Présentation de département d'exploitation d'eau:

La mission principale de département d'exploitation d'eau est la maintenance du réseau de distribution d'eau. Le département se présente selon l'organigramme ci-dessous (Fig. 7):

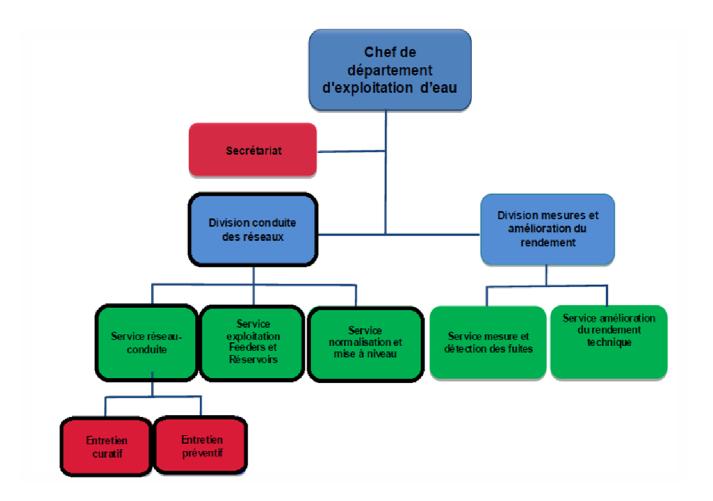


Figure 7: L'organisation du département d'exploitation d'eau

III.1.2 les activités de département d'exploitation d'eau

III.1.2.1 Service exploitation feeders et réservoirs :

Ce service assure la maintenance des feeders (réseau primaire) et les réservoirs et ses principales activités sont :

- → Mise en exploitation des grands ouvrages.
- → Entretien des équipements hydrauliques et électromécaniques.
- → Calage et maintenance des stabilisateurs de pression.
- → Amélioration des ouvrages d'infrastructures.
- → Entretien et rinçage des ouvrages de stockage.
- → Mise en place et contrôle du double comptage RADEEMA_ONEP.
- → Surveillance de la sécurité d'approvisionnement.

III.1.2.2 Service conduite réseau:

Il assure la maintenance de réseaux secondaire et tertiaire par ces activités :

- → Entretien curatif du réseau.
- → Réparation des fuites sur canalisation et branchements.
- → Mise en exploitation des canalisations neuves.
- → Suivi et contrôle du fonctionnement des canalisations (diagnostic, réseau,

Proposition de renforcement de réhabilitation et de renouvellement).

- → Suivi de la situation du patrimoine des canalisations.
- → Surveillance des installations.
- → Enquêtes réseau (localisation, coupure programmées).
- → Modélisation du réseau.
- → Suivi et mise à jour des plans de réseau.
- → Réception des travaux réalisés et établissement des notes de mise en Services.

III.1.2.3 Service normalisation et mise à niveau :

La normalisation et mise à niveau se fait par des activités :

→ Réhabilitation des branchements d'eau potable.

- → Changement des robinets vannes du réseau d'eau potable.
- → Création des regards.
- \rightarrow Sécurisation des ouvrages.

III.1.3 Les interventions

Le tableau ci-dessous résume les différentes activités et les étapes d'intervention de chaque service.

Les activités	Sous-activités	Les phases		
	réhabilitation des	1_ terrassement 2_reabilitation des matériels		
	branchements d'eau potable			
		3_remblaiment		
Normalisation et mise à		4_remise en état du lieu		
niveau	Changements des robinets	1_changements des appareils des robinets vannes		
	vannes du réseau d'eau potable	2_vidange des conduites		
		3_remblaiment		
		4_remise en état du lieu		
	No.	1_ isolement et vidange de la cuve		
	Nettoyage de réservoir	2_nettoyage des dépôts radier les parois et les accessoires		
Maintenance des		3_rincage et désinfection		
réservoirs et feeders	- /	1_terrassement		
	Réparation de fuite de feeders	2_réparation de la conduite		
	(> 400 mm)	3_vidange de la conduite		
		4_remblaiment		
		5_remise en état du lieu		
		1_terrassemant		
Maintenance de réseau de distribution	Réparation de la fuite	2_réparation de la conduite		
	(<400mm)	3_rincage		
		4_remblaiment		

Tableau 3: les interventions d'exploitation d'eau potable.

III.2. Etude d'impact environnemental :

III.2.1 Définition général d'étude d'impact :

L'étude d'impact sur l'environnement est un document scientifique et une procédure juridique d'évaluation des effets dus à certaines activités et projets de l'homme sur l'environnement. Elle est une politique et un instrument de gestion dans le cadre des projets et des prises de décisions. En tant qu'instrument scientifique. L'EIE est considérée comme un instrument utile voire indispensable à la préparation d'un projet susceptible de porter atteinte à l'environnement, par exemple, en cas de changement d'alignement d'autoroute, de réduction de la hauteur d'un barrage, ou de construction d'un port. Elle peut également porter sur des lois, plans et programmes relatifs à la protection de l'environnement.

Il faut souligner que l'EIE ne dicte pas de décisions quant à la réalisation des projets, mais qu'elle fait partie des procédures d'autorisation, et qu'elle est essentielle aux prises de décision futures. Elle permet d'identifier, de prévoir et d'évaluer les conséquences dommageables sur l'environnement des projets de développement, constructions etc.

C'est une évaluation effectuée a priori qui porte nécessairement sur une activité de l'homme qui n'est pas encore réalisée. Elle se distingue ainsi des audits d'environnement qui, eux, vérifient l'impact de certaines activités après leur réalisation

Elle s'inscrit dans le principe du développement durable, principe selon lequel chaque habitant de la Terre a le même droit aux ressources naturelles qui doivent être garanties pour le long terme dans le cadre d'une gestion rationnelle. De ce concept, trois facteurs peuvent être dégagés : les facteurs écologiques, économiques et sociaux.

III.2.2.L'évaluation des impacts environnementaux :

Pour réaliser l'évaluation des impacts environnementaux des activités de département d'exploitation d'eau, les étapes suivantes ont été suivies :

- ➤ Identifier les activités et leurs impacts environnementaux.
- ➤ Choisir la grille d'évaluation des impacts environnementaux.
- Evaluer les impacts environnementaux et déterminer la criticité
- Déterminer les impacts environnementaux significatifs à partir d'un outil qualité «PARETO»
- Etablir un plan d'action.

III.2.2.1 les impacts environnementaux des activités.

Le tableau ci-dessous présente l'impact environnemental de chaque phase d'intervention

Sous activités	Les phases	L'impact sur l'environnement
réhabilitation des	terrassement	Impact visuel (déblais) Pollution du sol (fuite d'huile)
branchements d'eau potable	réhabilitation des matériels	Pollution du sol (déchets des matériels anciens)
Changements des robinets vannes	changements des appareils des robinets Vannes	Pollution du sol (déchets des matériels anciens)
	vidange des conduites	épuisement des ressources (perte d'eau potable)
Nettoyage des réservoirs	isolement et vidange de la cuve	épuisement des ressources (perte d'eau potable)
reservoirs	nettoyage des dépôts radier les parois et les accessoires	Pollution du sol (la boue)
	rinçage et désinfection	Pollution du sol (fuite d'huile)+(chlore).
réparation de	terrassement	Impact visuel (déblais) Pollution du sol (fuite d'huile)
fuite de feeders	réparation de la conduite	Pollution du sol (débris)
	vidange de la conduite	épuisement des ressources (perte d'eau potable)
Réparation	terrassement	Impact visuel (déblais) Pollution du sol (fuite d'huile)
Des fuites	réparation de la conduite	Pollution du sol (débris)
	rinçage	épuisement des ressources (perte d'eau potable)

Tableau 4 : Impact environnemental de chaque phase d'intervention

III.2.2.2 méthodes d'évaluation des impacts environnementaux :

Il existe plusieurs grilles d'évaluation des impacts environnementaux :

Méthode 1 : de deux facteurs permet de connait l'importance de risque à partir de la relation C=P*I c'est la probabilité et l'impact en fonction de la criticité. (Fig. 8)

^{*&}lt;u>Description de l'impact :</u>

Critique: Plusieurs décès et/ou très importantes pertes d'actifs et/ou impact critique sur les revenus ou les coûts.

Majeur : Un seul décès et/ou multiples blessures et/ou importante pertes d'actifs et/ou grave impact sur les revenus ou les coûts.

Modéré : Blessures corporelles et/ou pertes d'actifs modérés et/ ou impact considérable sur les revenus ou les coûts.

Mineur: Premiers soins et/ou perte d'actifs mineures et/ou impact mineur sur les revenus ou les coûts.

Négligeable : Pas de blessure et/ou pertes de biens négligeables et/ou impact négligeable sur les revenus ou les coûts.

*Description de la probabilité :

Presque certain : L'événement est susceptible de se produire dans la majorité des cas.

Probable: L'événement se produira probablement dans la majorité des cas.

Possible: L'événement devrait éventuellement se produire.

Rare: L'événement pourrait se produire uniquement dans des circonstances Exceptionnelles.

	5	Presque certain	5	10	15		
tė	4	Probable	4	8	12	16	
Probabilité	3	Possible	3	6	9	12	15
ď.	2	Improbable	2	4	6	8	10
	1	Rare	1	2	3	4.	5
			Négligeables	Mineures	Modérés	Majeures	Critiques
			1	2	3	4	5
					Impact		
		Van Patri					
		Vert = Faible Jaune = Moyen					
		Orange = Élevé (Ma	jeur)				

Figure 8: Modèle de l'évaluation des risques

Facteur	Symb	0	1	2	3	4
	ole					

La méthode 2 : de 3 facteurs permet d'étudié la criticité a partir de la relation suivante C=F*D*G (Fig. 9).

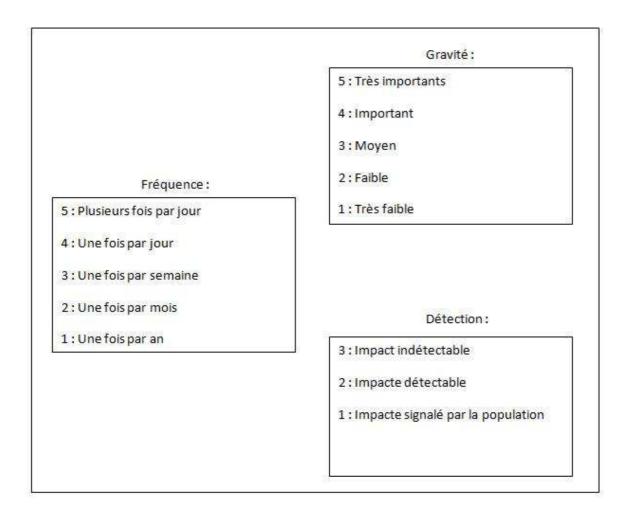


Figure 9: Exemple de calcul de la criticité

Descriptions des facteurs :

- -Fréquence : la répétition de l'activité (plusieurs fois par jour, une fois par jour, par semaine, par mois et par an).
- -Gravité : le risque de l'activité sur l'environnement (faible, moyen et important).
- -Détection : impact visuel et détectable ou pas.

Méthode 3 ou la méthode adoptée : La grille à 4 facteurs est une méthode d'évaluation des impacts environnementaux qui permet de calculé la criticité par 4 facteurs C=F*(G+S)*R cette relation laisse un grande intervalle pour les valeurs de la criticité c'est-a-dire une précision bien défini de l'impact environnemental. Elle prendre en compte la sensibilité du milieu et les normes environnementaux (Tab. 5).

Fréquence	F	Jamais	quelques fois durant la vie de la RADEEMA	Plusieurs fois par an	Plusieurs fois par mois	plusieurs fois par jour	
Gravité	G	Très faible	Faible peut être effacé	Peut être importante avec le temps	Importante mais Maitrisable	Importante non maitrisable	
Sensibilité	5	Milieu non sensible	Milieu Sensible				
Réglementation	R	Pas de réglemen tation	Conforme à la Réglement ation	Non conforme à un projet de réglementa tion	Non conforme à une réglementati on interne	Non conforme à la réglementa tion	
Criticité		= F*(G+S)*R					

Tableau 5 : Barème d'évaluation des impacts environnementaux.

Descriptions des facteurs :

- Fréquence : la répétition de l'activité (plusieurs fois par an, plusieurs fois par moi, plusieurs fois par jours)
- → Gravité : le risque de l'activité sur l'environnement (faible, important avec le temps, importante maitrisable et non maitrisable)
- Sensibilité: Sensible si il y a un impact sur le sol, l'eau de surface et l'air .Non sensible: si l'impact environnemental n'a pas un effet néfaste direct sur le milieu naturel.
- Réglementation : existante d'une loi ou d'une norme environnementale (respecter ou non).

III.3. L'évaluation des impacts d'exploitation d'eau

À l'aide du barème d'étude d'impact environnemental nous allons déterminer la criticité de chaque impact environnemental et la loi qui le gère (Tab. 10).

Sous activités	L'impact sur l'environnement	F	G	S	R	С	Loi ou norme
réhabilitation des	Impact visuel (déblais)	3	0	0	1	0	28-00 Article-3
branchements	Pollution du sol (fuite d'huile)	3	4	1	3	45	11-03 Article-17
d'eau potable	Pollution du sol (déchets des matériels anciens)	3	1	1	3	18	28-00 Article-29
Changements des robinets vannes	Pollution du sol (déchets des matériels anciens)	3	1	1	3	18	28-00 Article-29
	épuisement des ressources (perte d'eau potable)	3	0	0	4	0	10-95 Article-13
Nettoyage des réservoirs	épuisement des ressources (perte d'eau potable)	1	0	0	4	0	10-95 Article-13
reservoirs	Pollution du sol (la boue)	1	0	0	1	0	28-00 Article-3
	Pollution du sol (le chlore)	1	3	1	4	16	28-00 Article-29
	Pollution du sol (fuite d'huile)	1	4	1	3	15	11-03 Article-17
	Impact visuel (déblais)	3	0	0	1	0	28-00 Article-3
réparation de fuite de feeders	Pollution du sol (fuite d'huile)	3	4	1	3	45	11-03 Article-17
	Pollution du sol (débris)	3	3	1	3	36	11-03 Article-41
	épuisement des ressources (perte d'eau potable)		0	0	1	0	10-95 Article-13
Réparation	Impact visuel (déblais)	4	0	0	1	0	28-00 Article-3
Des fuites	Pollution du sol (fuite d'huile)	4	4	1	3	60	11-03 Article-17
	Pollution du sol (débris)	4	3	1	3	48	11-03 Article-41
	épuisement des ressources (perte d'eau potable)		0	0	1	0	10-95 Article 13

Tableau 6 : Fiche d'évaluation des impacts environnementaux

III.4. Résultat d'évaluation des impacts environnementaux :

Nous avons utilisé un outil qualité qui s'appelle le PARETO, pour pouvoir déterminer les impacts environnementaux significatifs sur les quels on va agir, pour cela nous allons proposer un plan d'actions pour les réduire le maximum possible (Tab. 7).

Définition de loi de PARETO:

La loi de Pareto est donc un outil simple qui permet d'identifier l'importance relative à différentes catégories d'événements afin de se concentrer sur les quelques causes essentielles qui ont le plus d'impact, plutôt que de se perdre dans le traitement d'une multitude de causes ayant des effets moindres.

L'utilisation de la loi de Pareto permet donc de déterminer rapidement quelles sont les priorités d'actions. Si on considère que 20 % des causes représentent 80% des occurrences, agir sur ces 20 % aide à solutionner un problème avec un maximum d'efficacité.

	Sous activité	Impact environnemental	criticité	% criticité	totale cumulé	%cumulé
		Pollution du sol	criticite	% CHICILE	cumule	76Cumule
A	Réparation des	(fuite d'huile)	60	20	60	20
В	fuites	Pollution du sol				
		(débris)	48	16	108	36
C	réparation de fuite de feeders	Pollution du sol	45	15	153	51
D	réhabilitation des	(fuite d'huile)	43	13	133	31
	branchements	(10100 0 110110)	45	15	198	66
E	réparation de fuite de	Pollution du sol				
	feeders	(Débris)	36	12	234	78
F	Réhabilitation des branchements	Pollution du sol				
	branchements	(déchets des anciens matériaux)	18	6	252	84
G	Changements des	Pollution du sol	10	0	232	04
J	robinets vannes	(déchets des anciens				
		matériaux)	18	6	270	90
H	Nettoyage des réservoirs	Pollution du sol				
	reservoirs	(chlore)	16	5	286	95
I		Pollution du sol	10	<u> </u>	280	93
•		(fuite d'huile)	15	5	301	100
J	Réparation					
	Des fuites	Epuisement des	0	0	301	100
K	réparation de fuite de feeders	ressources (perte d'eau			204	400
L	Changements des	potable)	0	0	301	100
L	robinets vannes		0	0	301	100
M	Réhabilitation des	Impact visuel (déblais)				
NI	branchements	T 1	0	0	301	100
N		Epuisement des ressources (perte d'eau				
		potable)				
	Nettoyage des	potaere)	0	0	301	100
O	réservoirs	Pollution du sol				
		(la boue)	0	0	301	100
P	réparation de fuite de			U	301	100
_	feeders		0	0	301	100
Q	réparation des fuites	Impact visuel	3	0	301	100
·		(déblais)	0	0	301	100
		total				
			301	100		

Tableau 7 : Tableau de PARETO : Criticité et % cumulé selon les impacts environnementaux

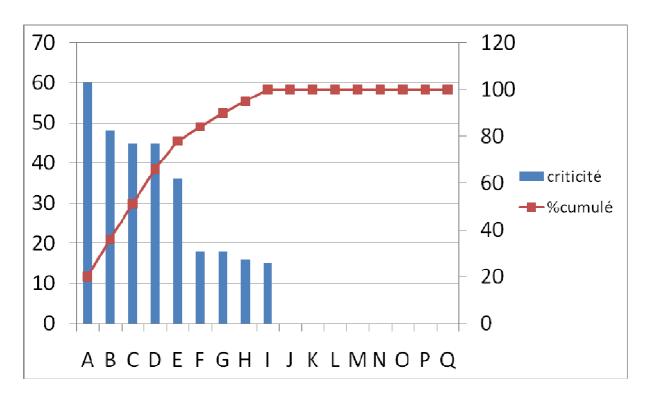


Figure 10: Graphique de PARETO

Selon la loi de PARETO et à partir de graphe ci-dessus, les sous activités qui se trouvent Avant l'intersection de la ligne qui passe de 80 et la courbe de %cumulé sont les 20% des sous activités qui sont responsables sur 80% des impacts environnementaux liés aux activités de DEE de la RADEEMA. Nous avons utilisé le diagramme PARETO pour déterminer la criticité à partir laquelle l'impact environnemental devient significatif.

A partir de l'analyse de graphe de PARETO, nous avons trouvés que les sous activités qui ont une Criticité qui est égale ou supérieure à 30 sont les impacts environnementaux significatifs. Alors, les impacts environnementaux significatifs liés aux activités de Département d'exploitation eau de la RADEEMA sont les suivants :

- ♣ Pollution du sol (fuite d'huile)
- ♣ Pollution du sol (débris)

III.5. Plan d'action:

Afin de réduire le maximum possible des impacts environnementaux qui résultent des activités de DEE de la RADEEMA, nous avons proposé un plan d'action qui concerne surtout les impacts environnementaux significatifs (Tab. 8).

Impact environnemental	Plan d'action
Pollution du sol (débris)	Evacuer les débris directement après les travaux dans des sacs étanches et les rejeter dans la décharge publique ; -Recyclage des anciens matériaux qui existent dans les débris ; -traité et éliminé les déchets dangereux ;
Pollution du sol (fuite d'huile)	-Contrôle de la machine avant l'utilisation (la maintenance systématique); - utiliser un bac pour recueillir l'huile déversé par des machines;

Tableau 8 : Plan d'action des impacts significatifs

Pour les impacts environnementaux non significatifs, nous pouvons suivre le plan d'action ci-dessous (Tab. 9).

Impact environnemental	Plan d'action
Pollution du sol (chlore)	-dilution de chlore avant de le jeter dans
	environnement;
	-neutralisation de chlore ;
Epuisement des ressources (perte d'eau	-amélioration de la gestion réseau ;
potable)	
Impact visuel (déblais)	Les déchets inertes peuvent être utilisés pour
	remblaiement de carrières. Ils peuvent être
	également utilisés pour valoriser, traiter ou
	éliminer les autres catégories de déchets à
	l'exception des déchets dangereux ;
Pollution du sol (la boue)	-traité et utilisé dans les activités traductionnels ;

Conclusion générale :

Le présent travail porte sur l'étude de l'impact environnemental lié à la maintenance des équipements de l'exploitation et de l'approvisionnement en eau potable de la ville de Marrakech. Il a été effectué au sein du département de l'exploitation de l'eau potable au siège de la RADEEMA. Le travail s'est déroulé selon deux principales étapes.

Recensement des activités et des interventions de département d'exploitation eau potable,

Classification des impacts environnementaux à partir d'un barème d'évaluation. A partir des données de l'étude nous avons établi un plan d'action des activités significatives qui montre que leurs impacts sur l'environnement pourrons être réduits d'environ 80%.

Un plan d'action des impacts non significatifs a été également établi et consiste surtout en la surveillance continue du réseau de distribution, le traitement et l'élimination les déchets et enfin recyclage des anciens matériaux.

Référence bibliographique

- -RADEEMA., (2010). Mission A. Audit du secteur d'eau potable, p17.
- -Razoki., (2000) .mise en place d'un système de gestion de base des données par la gestion des ressources en eau souterraines de la nappe du Haouz .Thèse universitaire Cadi Ayyad Marrakech, 20p.
- -Loi 11-03 relative aux études d'impacts sur l'environnement, document PDF.
- -Rapport de gestion de la RADEEMA de Marrakech. (2014)
- -Loi28-00 relative a la gestion des déchets et a leur élimination, document PDF.
- -Patrick. M., (2001). L'étude d'impact sur l'environnement, rapport PDF. Ministère de L'aménagement du territoire et de l'environnement.
- -Belloute.K., (2011). Les déchets solides et leurs impacts sur l'environnement dans la Région de Marrakech .FST Marrakech.
- -Cochet, A. Hazan, R. et Monition, L. Haouz de Marrakech bassin représentatif d'une zone aride au contact d'une haute chaine montagneuse : le haut atlas de climat subhumide .Service des Ressources en Eau, Rabat
- -Taleb A., (2013). Cours étude d'impact sur l'environnement.
- Kabbaj, A. Zeryouhi, I. et Pointet, T. Alimentation en eau de la ville de Marrakech: projet à court, moyen et long terme « Influences sur la nappe », document PDF.

Les Sites web:

- -www.Sita.ma/2011/02/Decret-2-07-253.pdf
- -www.obhbc.com/index.php/reglementation/loi-n-10-95 sur l'eau
- www.haiticulture.ch/Env Droit Introduction.html

ma.gov.water.www-

-www .definition-marketing.com

Annexes

Annexe 1

♦ loi n°28-00

Article 3: Déchets inertes : tout déchet qui ne produit de réaction physique ou chimique tels les déchets provenant de l'exploitation des carrières des mines des travaux de démolition de construction ou de rénovation et qui ne sont pas constitués ou contaminés par des substances dangereuses ou par d'autres éléments générateurs de naissances.

Article 29 : les déchets dangereux ne peuvent être traité en vue de leur élimination ou de leur valorisation que dans des installations spécialisées désignées par l'administration et autorisées conformément au plan directeur national de gestion des déchets dangereux et aux dispositions de la présente loi et ses textes d'application.

❖ Loi n°11-03

Article17: Le sol, le sous-sol et les richesses qu'ils contiennent en ressources limitées ou non renouvelables sont protégés contre toute forme de dégradation et doivent être exploités de manière rationnelle.

Article 41: L'administration et les collectivités locales et leurs groupements prennent toutes mesures nécessaires afin de réduire le danger des déchets, de les gérer, de les traiter et de les éliminer de manière adéquate susceptible d'éviter ou de réduire leurs effets nocifs pour la santé de l'homme, les ressources naturelles, la faune, la flore et la qualité de l'environnement en général.

❖ Loi n°10-95

Article 13: les plans de développement intégré des ressources en eau des bassins hydrauliques et en particulier la répartition de l'eau entre les différents secteurs usagers et les différentes régions du pays ou d'un même bassin, ainsi que les dispositions de valorisation, de protection et de conservation des ressources en eau.

Annexe 2

Le diagramme de Pareto est un graphique représentant l'importance de différentes causes sur un phénomène. Ce diagramme permet de mettre en évidence les causes les plus importantes sur le nombre total d'effet et ainsi de prendre des mesures ciblées pour améliorer une situation.

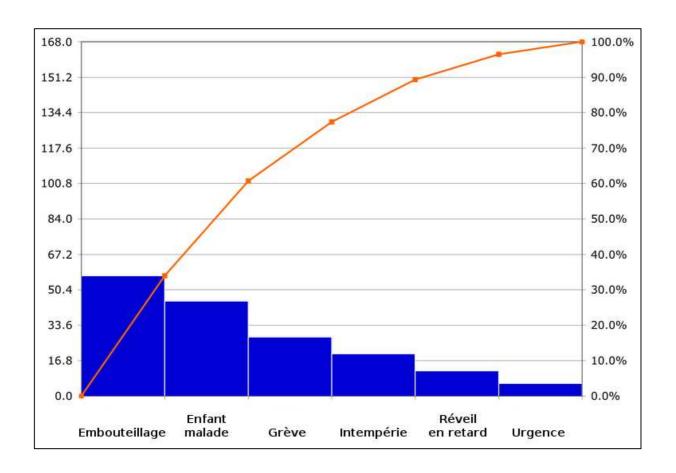


Diagramme de Pareto