

FACULTE DES SCIENCES ET TECHIQUES DEPARTEMENT DE GEOLOGIE **MASTER**

« EAU ET ENVIRONNEMENT »

Mémoire de fin d'études

Intitulé

Apport de la télédétection pour l'évaluation de la variation des surfaces d'eau et du couvert végétal dans la plaine du Haouz depuis 1984 jusqu'à 2014

Préparé par :

El HALIM Mouhssin

Soutenu Publiquement le 15 juin 2015, devant le jury composé de :

Pr. A. RHOUJJA	TI Président	Département de géologie FSTM, Univ. Cadi Ayyad, Marrakech
Pr. H. IBOUH	Encadrant	Département de géologie FSTM, Univ. Cadi Ayyad, Marrakech
Pr. S. ERRAKI	Examinateur	Département de physique appliquée FSTM, Univ. Cadi Ayyad, Marrakech
Pr. L. HANICH	Examinateur	Département de géologie FSTM, Univ. Cadi Ayyad, Marrakech

Année 2014/2015

Avant-propos

Dans le cadre de ce projet de fin d'études de Master sciences et techniques « Eau et Environnement », un stage de quatre mois, a été réalisé au sein du laboratoire Géosciences et Environnement, département de géologie, Faculté des Sciences et techniques université Cadi Ayyad, Marrakech.

Ce travail a été réalisé en collaboration avec le laboratoire mixte international « Télédétection et ressources en eau en méditerranée semi-aride » (*LMI-TREMA*). Cette étude a pour objectif principal l'application de la télédétection pour le suivi de l'évolution spatio-temporelle du couvert végétal et des surfaces d'eau dans la plaine du Haouz depuis 1984 à 2014.

Objectifs:

- Initiation au traitement des images satellitaires à basse et à haute résolution spatiale.
- Elaboration des cartes des indices spectraux NDVI, NDWI et NDSI de la plaine du Haouz.
- Estimation du taux de variation de la végétation, les surfaces d'eau et du sol dans la plaine depuis 1984 jusqu'à l'actuel.
- Etablissement de la carte d'occupation du sol de la zone d'étude.
- Etablissement de la carte des différents types des cultures dans la plaine.
- Vérifier l'extension de la zone urbaine sur le couvert végétal et le sol dans ces dernières 30 années.
- Essaie d'établir un modèle de prévision de la dynamique végétale pendant les années prochaines dans la plaine du Haouz.

Méthodes :

Prise en main des logiciels de traitement des images satellites (*Erdas Imagine*, *ENVI*), du SIG (*Arcgis 10*, *Global mapper*, et *Qgis*) et de modélisation (*R*, *Windis*p); Traitement et comparaison des différentes images multi-spectrales à basse et haute résolution spatiale (*LANDSAT TM*, *ETM*+ *et OLI*, *SPOT4 et MODIS TERRA*); Calcul et comparaison des indices spectraux NDVI, NDSI et NDWI.

Remerciements

Dans le cadre de ce travail ; Je tiens à remercier vivement le département de géologie, faculté des sciences et techniques et le <u>Laboratoire Géosciences et Environnement</u> qui m'ont offert l'occasion de réaliser mon projet de fin d'étude; Le laboratoire Géo-hydrogéologie (Géohyde) de la faculté des sciences Semlalia de m'avoir accueilli pendant ce stage, Les membres du Laboratoire Mixte Internationale (IRD) de La FSSM pour les discussions fructueuses.

Au cours de l'élaboration de ce travail, j'ai bénéficié de l'aide et conseils de nombreuses personnes, tant sur le plan scientifique que technique. Il m'est donc très agréable de leur adresser mes sincères remerciements.

Mes remerciements les plus sincères s'adressent tout d'abord à Mr. Hassan IBOUH, Professeur à la faculté des sciences et techniques de Marrakech (FSTM), de m'avoir proposé ce sujet et m'avoir encadré le long de ce stage. Je vous remercie infiniment mon professeur pour vos conseils précieux, votre disponibilité et vos remarques judicieuses. Je tiens tout particulièrement à remercier Mr. Salah ERRAKI, Professeur à la faculté des sciences et Techniques et chercheur au laboratoire mixte international (LMI-TREMA), pour ses précieux conseils et pour les idées qu'il m'a proposés lors de mon travail. Je le remercie également pour sa disponibilité. Je remercie aussi Mr. Driss CHAFOUQ doctorant, et le Pr. LAFTOUHI du laboratoire GEOHYD, FSSM, de m'avoir accueilli au sein du Laboratoire durant toute la période du stage, je les remercie aussi pour leurs conseils précieux. Mes remerciements vont aussi au personnel de l'office régional de mise en valeur agricole du Haouz (ORMVAH) pour la documentation et les données nécessaires pour accomplir cette étude. Le dernier et non le moindre des mercis à tous les professeurs du département de géologie. Un grand merci aux membres du secrétariat et des laboratoires de la FSTG, je cite en particulier MM. Les Professeurs : L. HANNICH, M. SAIDI, A. RHOUJJATI et A. **BACHNO**; Mes remerciements vont aussi à mes collègues de classe (Master EE, 2013/2015) qui m'ont aidé sans réserve d'une façon ou d'une autre à concevoir ce travail.

Ma reconnaissance est aussi adressée à tous ceux qui ont contribué de loin ou de près à la réalisation de ce travail.

Enfin ces remerciements ne seront pas complets sans citer les membres du jury qui ont bien voulu accepter de juger ce travail, qu'ils trouvent ici l'expression de ma gratitude.

Résumé

La plaine du Haouz est une grande dépression qui s'étire sur une longueur de 150 Km d'Est en Ouest et une superficie d'environ 6000 Km². Elle est limitée au Nord par le massif des Jbilet et au sud par les reliefs du Haut Atlas de Marrakech. L'économie dans la plaine est basée essentiellement sur l'agriculture et l'élevage. Le principal objectif de ce travail et de réaliser et interpréter les cartes des indices de végétation (NDVI) et de l'eau (NDWI), à partir des images Landsat depuis 1984 jusqu'à 2014. Vue la non disponibilité de toute les images en période systématique, nous avons choisi celles du mois de juin des années 1984; 1986; 2002; 2009; 2010 et 2014.

« Change détection » est une nouvelle technique qui est souvent utilisée pour détecter les variations de la couverture terrestre à partir des images multi-temporelles. Nous avons testé cette technique pour les deux types de NDVI qu'on a déjà calculé à partir des images Landsat et Modis. Pour les images à haute résolution spatiale la végétation dans la plaine s'est développée sur environ 218 Km² de plus surtout dans le Haouz central et une diminution d'une surface d'ordre de 182 Km² surtout à l'Ouest de la plaine. Le bilan montre une augmentation de 36 km². Pour les images Modis on remarque que certaines zones vertes ont diminué d'une surface globale de 318 Km² et l'extension de la végétation dans d'autres endroits a atteint 310 Km², avec un bilan de 8 km² de moins.

Le calcul de l'indice NDWI (Normalized Difference Water Index) a permis de suivre l'évolution des surfaces d'eau dans la plaine depuis l'année 1984. L'examen des cartes de NDWI montre une régression globale d'environ 25% au cours de ces dernières 30 années.

Les indices NDVI (Normalized Difference Vegetation Index) et NDSI (Normalized Difference Soil Index) montrent une corrélation des valeurs et une variation concordante dans le temps. Dans la plaine du Haouz, la surface occupée par le sol fertilisé a été de l'ordre de 131,89 Km² en 1984, après 30 ans son extension a dépassé les 767 Km², ainsi que la végétation a vu une augmentation de 13,5 % depuis 1984.

Les images Landsat traités ont montré que Le Haouz a évolué de 12,2% au terme de la végétation depuis 1984 jusqu'à 2009, et de 1,1% seulement de 2009 à 2014. Les images Modis à basse résolution spatiale affirment cette évolution, mais elles montrent que le couvert végétal s'est développé depuis 2009 jusqu'à atteindre son maximum en 2011 puis il a chuté d'environ 7,1 % en 2012 et 4,1 % en 2014.

Mots clés : La plaine du Haouz, NDWI, NDVI, NDSI, Change détection, Les images satellites, Landsat, Modis.

خلاصة

يمتد سهل الحوز على طول 150 كم من الشرق إلى الغرب، على مساحة تقارب حوالي 6000 كم مربع. ويحده من الشمال صخور الجبيلات و من الجنوب جبال الأطلس الكبير. ويعتمد اقتصاد المنطقة أساسا على الزراعة وتربية المواشي. الهدف الرئيسي من هذه الدراسة هو تحديث وتفسير خرائط مؤشر الغطاء النباتي NDVI و مساحات المياه NDWI على الفترة الممتدة بين 1984 و2014 استنادا على صور القمر الإصطناعي Landsat ونظرا لقلة الصور العالية الجودة Landsat، ارتكزنا في هذا العمل على صور المأخودة في يونيو السنوات التالية : 1984، 1986، 2002، 2000 و 2014 و2014 2014 .

استنادا على النتائج المستوحات من خرائط مؤشر المياه، تمكنا من متابعة ديناميكية مساحات الماء في الحوز منذ 1984، والتي سجلت تراجعا ملحوظا يقدر ب 25% في السنوات الأخيرة.

أما بالنسبة لمؤشري الغطاء النباتي والتربة فقد سجلا توافقا في النتائج، حيث عرف الأول زيادة بحوالي 13,5 % والثاني ب12%.

انطلاقا من الخرائط المنجزة لاحظنا تطور للغطاء النباتي ب 12,5% منذ سنة 1984 الى حدود 2009، بينما سجل هذا الأخير تباطئا في الإرتفاع وسجل زيادة تقدر ب 1،1% فقط الى غاية 2014. ونظرا لأن هذه الفترة بالذات تزامنت مع انطلاق عدة مشاريع ترمي بالخصوص الى الرفع من مردودية الإنتاج بالقطاع الزراعي وتشجيع الفلاحين، ارتأينا الى دراسة مفصلة لدينامية المساحات الخضراء بالمنطقة، هذه المرة باستعمال صور القمر الصناعي MODIS الذي يوفر صور الأعوام 2009، 2009.

هذه الصور بينت ان الغطاء النباتي ازداد بوتيرة عادية الى غاية العام 2011، قبل ان يشهد تراجعا في الثلاث سنوات الأخيرة لعدة أسباب أهمها مناخية.

كما تمكنا بتطبيق تقنية تحديد التغير المكاني و لأول مرة بالمنطقة، هذه الأخيرة مكنت من استنباط الأماكن التي عرفت زيادة أو تراجعا للغطاء النباتي بالحوز.

الكلمات المفتاح : الغطاء النباتي، مساحات المياه، الحوز، التغير المكاني، لاندسات، موديس

Sommaire

INTRODUCTION GENERALE	13
Présentation du projet	14
Chapitre I : Généralités sur La zone d'étude	15
Présentation générale du bassin versant du Tensift et de la plaine du Haouz	16
I. Contexte géographique et population:	16
II. Cadre hydrogéologique et hydrologique :	21
III. Pédologie :	24
IV. Contexte climatique :	25
V. Irrigation et occupation du sol :	25
CHAPITRE II : MATERIEL ET METHODE DE TRAVAIL:	.27
I. Principe de la télédétection et notion de réflectance	.28
1. Principe et domaine d'application	.28
2. La notion de réflectance :	.30
3. Fonctionnement des capteurs :	32
II. Matériel de travail et apport de la télédétection:	.34
1. Présentation des données utilisées :	34
a) Les images satellitaires à haute résolution spatiale :	34
b) Les images satellitaires à basse résolution spatiale :	.41
c) Données expérimentales :	42
2. Prétraitement des images satellitaires à haute résolution spatiale	.43
a) Correction géométrique :	46
b) Correction atmosphérique :	46
3. Classification des images :	.54
a) Classification non supervisée (ou non dirigée) :	.54
b) Classification supervisée (ou dirigée) :	.54
III. LES INDICES SPECTRAUX	61
1. L'indice de végétation par différence normalisée ou indice de Tucker (NDVI) :	.61
2. L'indice de l'eau par différence normalisée NDWI (Gao, 1996) :	63
3. Indice du sol par différence normalisée NDSI (Takeuchi and Yasuoka, 2004):	.64
4. Détection des changements (CHANGE DETECTION) :	66
CHAPITRE 3 : RESULTATS ET DISCUSSIONS	68

I. Résultats de traitement des images satellites à haute résolution spatiale (Période 1984-2014)
:70
1. Variabilité spatio-temporelle des surfaces d'eau dans la plaine Haouz :
2. Variabilité spatio-temporelle de la végétation et du sol dans la plaine du Haouz :75
3. Création de la carte d'occupation du sol de la plaine du Haouz à partir des images à haute
et à moyenne résolution spatiale :87
II. Résultats de traitement des images satellites à basse résolution spatiale (période 2009 à
2014) :
III. Application de la technique « Change detection » pour l'estimation du changement de la
couverture terrestre du Haouz entre 2009 et 2014 :109
CONCLUSIONS GENERALES ET DISCUSSION111

Liste des figures

FIG. 1 : SITUATION GEOGRAPHIQUE DU BASSIN VERSANT DE TENSIFT	
FIG.2 : CARTE DES PENTES (EN %) DU BASSIN VERSANT TENSIFT	19
FIG.3 : CARTE HYPSOMETRIQUE DU BASSIN VERSANT TENSIFT	19
FIG.4 : SITUATION GEOGRAPHIQUE DE LA PLAINE EL HAOUZ. (A) LOCALISATION	DE LA
ZONE D'ETUDE PAR RAPPORT AUX DOMAINES STRUCTURAUX DU MAROC (IMAG	E
LANDSAT A 30M DE RESOLUTION SPATIAL). (B) LOCALISATION DE LA PLAINE EI	A HAOUZ
DANS LE BASSIN VERSANT TENSIFT	20
FIG.5 : CARTE GEOLOGIQUE SIMPLIFIER DU HAOUZ (D'APRES LA CARTE GEOLOG	IQUE
1/500000 DE MARRAKECH, MODIFIE)	22
FIG.6 : COUPE GEOLOGIQUE AU NIVEAU DE LA PLAINE D'EL HAOUZ (AMBROGGI H	ET
THUILE, 1952)	22
FIG.7 : LES PRINCIPALES ENTITES HYDROLOGIQUES DANS LE BASSIN VERSANT	FENSIFT
	23
FIG. 8 LA NAPPE PLIO-QUATERNAIRE DU HAOUZ	25
FIG. 9 : VARIATION DU NIVEAU DE LA NAPPE D'EL HAOUZ DEPUIS 1986 JUSQU'A	2002
(BERRAZOUK ET AL, 2004)	25
FIG. 10: CARTE PEDOLOGIQUE DE LA PLAINE D'EL HAOUZ (DIRECTION DE L'AGR	ICULTURE
DU COMMERCE ET DES FORETS, 1951)	26
FIG.11 : PRINCIPE DE LA TELEDETECTION (SOURCE : HTTP://WWW.ALERTES-	
METEO.COM)	
FIG. 12 : DIAGRAMME MONTRANT LA TRANSMISSION (OU OPACITE) ATMOSPHE	RIQUE DE
LA TERRE A DIVERSES LONGUEURS D'ONDE ET RADIATION ELECTROMAGNETIQ	UE
(SOURCE : NASA (ORIGINAL); SVG BY MYSID)	31
FIG.13 : GEOMETRIE DE MESURE DE LA REFLECTANCE (GDTA 1991)	33
FIG.14 : SPECTRES TYPIQUES DE REFLECTANCE DE LA NEIGE, DE L'EAU, DU SABL	E ET DE
LA VEGETATION. (SOURCE : ENVCAL - SUIVI DE L'ENVIRONNEMENT PAR TELEDET	ECTION)
	34
FIG.15 : SCHEMA GENERAL D'UN CAPTEUR (GIRARD, 1999)	35
FIG.16 : MESURE DANS LE PLAN D'AVANCEMENT DU CAPTEUR (GARRIGUES 2004	ł)35
FIG.17 : LA DIFFERENCE DE SIGNATURE SPECTRALE ENTRE LA VEGETATION, L'E	AU ET LE
SOL NU SELON LES BANDES DU CAPTEUR LANDSAT TM (ZONE AGDAL, MARRAKE	CH) 38
FIG.18 : LA DIFFERENCE DE SIGNATURE SPECTRALE ENTRE LA VEGETATION, L'E	AU ET LE
SOL NU SELON LES BANDES DU CAPTEUR SPOT HRVIR (AGDAL, MARRAKECH)	

FIG.19 : LA PLAINE DU HAOUZ, (A) IMAGE LANDSAT FALSE COLORE A RESOLUTION	
SPATIAL 30M, (B) IMAGE SPOT A RESOLUTION SPATIAL 20M	39
FIG. 20 : RELATIONS ENTRE LE CHAMP DE PRISE DE VUE DES CAPTEURS, LA RESOLUTI	ON
SPATIALE DES IMAGES ET LA REPETITION DES OBSERVATIONS (SOURCE :	
HTTPS://WWW.RNCAN.GC.CA/SCIENCES-TERRET)	40
FIG.21 : RESEAU DES STATIONS PLUVIOMETRIQUES ET METEOROLOGIQUES DANS LA	
ZONE D'ETUDE	44
FIG.22 : L'IMAGE LANDSAT OLI BRUTE (16 BITS)	47
FIG.23 : IMAGE LANDSAT OLI AVEC UN ETALONNAGE RADIOMETRIQUE EN 8 BITS	48
FIG. 24 : TRANSFORMATION DES IMAGES BRUTES EN RADIANCE SPECTRALE A	
L'OUVERTURE DU CAPTEUR (LY)	50
(IMAGE (A) AVANT TRANSFORMATION, IMAGE (B) APRES TRANSFORMATION)	50
FIG.25 : AMELIORATION RADIOMETRIQUE DE L'IMAGE SPOT DE LA ZONE D'ETUDE, (A))
AVANT STRECHING, (B) APRES STRECHING	51
FIG.26 : HISTOGRAMMES DES VALEURS DES PIXELS, A DROIT AVANT STRECHING (LES	
VALEURS BRUTES), A GAUCHE APRES STRECHING	51
FIG.27 : EXEMPLE DES ZONES D'ENTRAINEMENTS CHOISIS SUR L'IMAGE SPOT	55
FIG. 28 : EMPLACEMENT DES ZONES D'ENTRAINEMENTS	56
FIG.29 : IMAGE LANDSAT TM AVANT ET APRES L'AMELIORATION « ALARM MASK »	58
FIG.30 : HISTOGRAMME DE DISTRIBUTION DES VALEURS NUMERIQUES DES PIXELS DA	NS
CHAQUE BANDE POUR LES DIFFERENTES SIGNATURES.	59
FIG.31 : GENERATION DES POINTS ALEATOIRES SUR L'IMAGE	60
FIG.32 : VARIATION DE NDVI EN FONCTION DE LA SANTE DE LA VEGETATION	
(ILLUSTRATION BY ROBERT SIMMON, NASA GSFC)	61
FIG.33 : INFLUENCE DE L'ACTIVITE CHLOROPHYLLIENNE SUR LA VALEUR DE NDVI	
(WWW.DRONESIMAGING.COM)	62
FIG.34 : LES DEUX TYPES D'INDICE DE L'EAU PAR DIFFERENCE NORMALISEE (NDWI)	63
FIG.35 : IMAGE GOOGLE EARTH	64
FIG.36 : INDICE DE SOL PAR DIFFERENCE NORMALISEE (NDSI)	64
FIG.37 : VARIETE SPECTRALE DES ELEMENTS DE LA TERRE EN RELATION AVEC LES	
INDICES NORMALISEES NDVI, NDWI ET NDSI (TAKEUCHI AND YASUOKA, 2004)	65
FIG.38 : ILLUSTRATION DE L'OPERATION DE SOUSTRACTION ALGEBRIQUE DE 2 IMAGE	S
SATELLITES AVEC DES EXEMPLES DE VALEURS DE PIXELS	66
FIG.39 : ORGANIGRAMME METHODOLOGIQUE DES DIFFERENTES ETAPES DE LA	
DETECTION DU CHANGEMENT DE LA COUVERTURE TERRESTRE	67

FIG.40 : LA SIGNATURE SPECTRALE DE L'EAU DANS LES DIFFERENTES IMAGES LANDSAT
TM (1984-2010 ET OLI 2014)
FIG.41 : VARIATION DE LA SIGNATURE SPECTRALE DE L'EAU DANS LES IMAGES LANDSAT
APRES TRAITEMENT
FIG.42 : DYNAMIQUE DES SURFACES DE L'EAU DANS LA PLAINE ELHAOUZ DEPUIS 1984
JUSQU'A 2014
FIG.43 : CORRELATION ENTRE L'INDICE DE L'EAU ET LES MOYENNES DES HAUTEURS
MENSUELLES DE PLUIE
FIG.44 : VARIATION DU NOMBRE DE PIXELS DE NDSI ET NDVI DANS LES IMAGES
SATELLITAIRES LANDSAT (1984-2014)
FIG.45 : MOYENNE DES HAUTEURS MENSUELLES DES PLUIES EN MM DANS LA PLAINE
ELHAOUZ (1984-2014)
FIG.46 : VARIATION D'INDICE DE VEGETATION DANS LA PLAINE ELHAOUZ DEPUIS 1984
JUSQU'A 2014
FIG.47 : EVOLUTION DE LA SURFACE TOTALE DES ESPECES VEGETALES IMPLANTEES
DANS LA PLAINE ELHAOUZ DEPUIS 2002 JUSQU'A 2014 (DONNEES DE L'ORMVAH)
FIG.48 : PRINCIPE DE PONDERATION DANS LA METHODE IDW
FIG.49 : SPATIALISATION DES MOYENNES DES PRECIPITATIONS ANNUELLES (EN MM) PAR
LA METHODE IDW
FIG.50 : LES SITES ROI UTILISES POUR ENTRAINER LA CLASSIFICATION
FIG.51 : LA VALEUR DE NDVI APPROPRIES A CHAQUE TYPE DE VEGETATION POUR
L'IMAGE SPOT4
FIG.52 : LA PART DE CHAQUE CULTURE DANS LA SURFACE TOTALE ARABLE DANS LA
PLAINE ELHAOUZ
FIG.53 : LA CARTE DES DIFFERENTES D'AGRICULTURES QUI SUBSISTENT DANS LA PLAINE
ELHAOUZ (ELABOREE A PARTIR DE NDVI D'IMAGE SATELLITE SPOT4, RS = 20M)
FIG.54 : LA VALEUR DE NDVI APPROPRIEE A CHAQUE TYPE DE VEGETATION POUR
L'IMAGE LANDSAT TM
FIG.55 : LA CARTE DES DIFFERENTS TYPES DE CULTURE DE LA PLAINE DU HAOUZ
(ELABOREE A PARTIR DE NDVI D'IMAGE SATELLITE LANDSAT TM, RS = 15M)90
FIG.56 : LA PART DE CHAQUE CULTURE DANS LA SURFACE TOTALE DE LA PLAINE
ELHAOUZ
FIG.57 : LA VALEUR DE NDVI APPROPRIEE A CHAQUE TYPE DE VEGETATION POUR
L'IMAGE LANDSAT OLI
FIG.58 : LA CARTE DES DIFFERENTES D'AGRICULTURES QUI SUBSISTENT DANS LA PLAINE
ELHAOUZ (ELABOREE A PARTIR DE NDVI D'IMAGE SATELLITE LANDSAT OLI, RS = 15M) 92

FIG.59 : LA PART DE CHAQUE CULTURE DANS LA SURFACE TOTALE DE LA PLAINE			
ELHAOUZ			
FIG.60 : HISTOGRAMME DE DISPERSION DES CLASSES THEMATIQUES DANS LA BANDE 193			
FIG.61 : TABLEAUX DE LA DISTANCE STATISTIQUE ET DE POURCENTAGE D'ASSOCIATION			
ENTRE LES CLASSES POUR LA CLASSIFICATION D'IMAGE TM 1984			
FIG.62 : TABLEAUX DE LA DISTANCE STATISTIQUE ET DE DEGRE DE SEPARATION ENTRE			
LES CLASSES POUR LA CLASSIFICATION D'IMAGE OLI 201494			
FIG.63 : VARIATION DE LA SUPERFICIE (EN KM ²) D'OCCUPATION DU SOL DANS LA PLAINE			
ELHAOUZ DEPUIS 1984 JUSQU'A 201495			
FIG.64 : EXTENSION DE LA VILLE MARRAKECH DEPUIS 1984 JUSQU'A 201496			
FIG.65 : VARIATION DE NDVI DU CAPTEUR MODIS AU COURS DE L'ANNEE PENDANT LA			
PERIODE 2009-2014 (SOURCE : USDA/NASA/UMD GLAM PROJET)			
FIG.66 : L'INTERVALLE DE FLUCTUATION DE LA VALEUR DE NDVI DES IMAGES MODIS AU			
MOIS DE JUIN DANS LA PLAINE DU HAOUZ DEPUIS 2009 A 2014 (SOURCE :			
USDA/NASA/UMD GLAM PROJET)100			
FIG.67 : EVOLUTION DE LA VEGETATION DANS LA PLAINE DU HAOUZ DEPUIS 2009			
JUSQU'A 2014100			
FIG.68 : HAUTEURS DE PLUIE MENSUELLE EN MM DANS LA PLAINE ELHAOUZ (2009-2014)			
FIG.69 : SPATIALISATION DES PLUIES (EN MM) DANS LA PLAINE ELHAOUZ DE 2009 A			
2014			
FIG.70 : EVOLUTION DE LA PRODUCTION (KG) (EN ROUGE) ET LA SUPERFICIE (HA) (EN			
BLEU) DES CULTURES DANS LA ZONE D'ACTION D'ORMVAH DEPUIS 2009 A 2014			
(SOURCE : ORMVAH)			
FIG.71 : DETECTION DU CHANGEMENT DU COUVERT VEGETAL DANS LA PLAINE ELHAOUZ			
DEPUIS 2009 A 2014 (ISSUS DE NDVI DES IMAGES LANDSAT)107			
FIG.72 : LES ZONES LES PLUS EXPOSEES AUX CHANGEMENTS D'INDICE DE VEGETATION			
DANS LA PLAINE DU HAOUZ (1984-2002)108			
FIG.73 : LES ZONES LES PLUS EXPOSEES AUX CHANGEMENTS D'INDICE DE VEGETATION			
DANS LA PLAINE ELHAOUZ (2002-2014)109			
FIG.74 : EVOLUTION DES SURFACES AYANT SUBIT UN TAUX DE CHANGEMENT SUPERIEUR			
A 10%			
FIG.75 : DETECTION DU CHANGEMENT DU COUVERT VEGETAL DANS LA PLAINE ELHAOUZ			
DEPUIS 2009 A 2014 (ISSUS DE NDVI DES IMAGES MODIS)110			
FIG.76 : EVOLUTION DE LA VEGETATION, SOLS ET SURFACE D'EAU DANS LA PLAINE DU			
HAOUZ DEPUIS 1984			

FIG.77 : EVOLUTION DE LA SUPERFICIE DES CULTURES DANS LA PLAINE ELHAOUZ
PENDANT LA PERIODE (2009-2014). (ORMVAH)115
FIG.78 : EVOLUTION DE LA SUPERFICIE DE CERTAINS FRUITS DANS LA PLAINE EN 2009
(ORMVAH)
FIG.79 : EVOLUTION DE LA SUPERFICIE DE CERTAINS FRUITS DANS LA PLAINE EN 2014
(ORMVAH)
FIG.80 : LA DENOMINATION DES SCENES DE LANDSAT. (SOURCE : WWW.USGS.GLOVIS.COM)
FIG.81 : COMPARAISON DES BANDES REFLECHISSANTES DE L'ENERGIE SOLAIRE RSR :
PROFILS DE L5 TM (G. CHANDER ET AL, 2009)118

Liste des tableaux

Tab. 1 : Ressources en Eau d'irrigation : les eaux superficielles (ORMVAH)
Tab.2 : Ressource en Eau d'irrigation : les eaux souterraines (source : ORMVAH)27
Tab.3 : Domaine d'application de la Télédétection31
Tab.4 : Caractéristiques du capteur Landsat TM (http://landsat.gsfc.nasa.gov/)
Tab.5 : Caractéristiques du capteur HRVIR embarqué sur la plate forme SPOT-4 (www.cnes.fr)35
Tab.6 : Les bandes spectrales de Landsat TM
Tab.7 : les valeurs du Pixel de chaque espèce selon les bandes du Capteur TM 37
Tab.8 : Caractéristiques des Bandes spectrales du capteur HRVIR
Tab.9 : Equivalence entre es bandes du capteur TM (en noir) et OLI (en rouge) de Landsat40
Tab.10 : Les principales métadonnées des images Landsat utilisées (Glovis.usgs.gov)41
Tab.11 : date et coordonnées spatiale des images NDVI de MODIS (Terra) (MOD44 16-Day)
utilisés dans ce travail
Tab.12 : Coordonnées (GPS) des sites d'échantillonnages 55
Tab.13 : Matrice de corrélation du l'image Landsat TM 1984
Tab.14 : Vérification de la classification supervisée par la matrice de confusion 58
Tab.15 : Evaluation de la classification supervisée par la séparabilité des signatures
Tab.16 : comparaison des l'indices calculés pour onze types d'objets de couverture terrestre64
(Takeuchi and Yasuoka, 2004)64
Tab.17 : Variation de la superficie de l'eau dans la plaine d'Haouz (1984-2014)
Tab. 18 : Evolution spatio-temporelle de NDSI dans la plaine Elhaouz (1984-2014)
Tab.19 : Evolution spatio-temporelle de NDVI dans la plaine Elhaouz (1984-2014)
Tab.20 : Perspectives du plan agricole régional Marrakech Tensift Elhaouz (Données
d'ORMVAH)
Tab.21 : Variation de la superficie du couvert végétal dans la plaine pour les deux capteurs Modis
et Landsat (2009-2014)
Tab.22 : Informations générales pour chaque Landsat satellite (USGS.Glovis)
Tab.23 : la gamme spectrale du TM 5, après étalonnage des plages dynamiques, et l'irradiance
solaire exo-atmosphérique (ESUN\$) (G. Chander et al, 2009)115
Tab.24 : La distance Terre-Soleil (d) en unite astronomique pour les jours de l'année (DOY).
(Nautical Almanac Office)

Liste des abréviations

ABHT: Agence du Bassin Hydraulique du Tensift ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer AVHRR: Advanced Very High Resolution Radiometer **BR:** Basse Résolution **CESBIO:** Centre d'Etudes Spatiales de la **BIO**sphère **CNES:** Centre National d'Etudes Spatiales **CTIV : Centre de Traitement des Images VEGETATION DREF : Direction Régionale des Eaux et Forêts** FAO: Food and Agriculture Organization FOV: Field Of View GFOV: Ground Field Of View GPS: Global Positioning System HR: Haute Résolution HRV: Haute Résolution dans le Visible HRVIR: Haute Résolution dans le VIsible et le proche InfraRouge **IDW:** Inverse **D**istance Weighted **MODIS: MOD**erate resolution Imaging Spectroradiometer NASA: National Aeronautics and Space Administration **NDVI:** Normalized Difference Vegetation Index **NDSI:** Normalized **D**ifference Soil Index **NDWI:** Normalized **D**ifference Water Index **OLI : Operational Land Imager ORMVAH:** Office Régional de Mise en Valeur Agricole du Haouz SMAC: Simplified Method for Atmospheric Correction **SPOT : Système Pour l'Observation de la Terre** TOA: Top Of Atmosphere TM: Thematic Mapper UCAM: Université Cadi Ayyad de Marrakech

Introduction générale

Les études sur le changement de l'occupation et l'utilisation du sol sont d'une grande importance car elles permettent de connaître les tendances actuelles dans les processus de déforestation, dégradation, désertification et perte de la biodiversité. Il existe des facteurs naturels qui favorisent les variations de la couverture végétale. Néanmoins, pendant les dernières décennies, l'activité humaine est le principal déclencheur de la transformation des écosystèmes.

Dans la région de Tensift et du Haouz l'économie repose principalement sur l'agriculture. De par le nombre d'emplois et la superficie dédiée à son développement, le secteur pèse plus que le tourisme. En effet, selon la haute commission du programme Maroc vert, 53% de la population active est employée dans les terres agricoles dont la surface dépasse les 3,16 millions de hectares.

Plusieurs tentatives ont été mises en place pour améliorer la production agricoles dans cette région qui est placée en tête dans différentes filières telles que l'abricot et l'olive (20% de la production nationale). Le plan du « Maroc vert » qui propulse l'agriculture dans la plaine vise l'extension de la superficie exploitée, l'amélioration des rendements de 1,7 à 5 tonnes par hectare, la modernisation de l'outil de transformation et l'amélioration de la qualité des produits (*Source : ORMVAH*).

Dans ce contexte, la télédétection est un outil privilégié. Elle permet l'acquisition régulièrement de données distribuées dans l'espace et dans le temps pour caractériser une évolution spatiotemporelle de l'occupation du sol et les surfaces d'eau. Ces caractéristiques peuvent être utilisées dans un schéma de modélisation spatialisée pour appréhender le fonctionnement et la dynamique des agro-écosystèmes dans la plaine du Haouz depuis 1984 à nos jours.

L'examen des images satellites de différentes périodes va permettre de suivre l'évolution des espaces verts et les surfaces d'eau dans la zone d'étude, ce qui sera un moyen facile et moins couteux et rapide pour réaliser des cartes d'évolution spatiotemporelle de l'occupation du sol. Ces dernières serviront de document de base pour toute décision sur l'aménagement urbain ou agronomique de la plaine du Haouz.

Présentation du projet

Cette étude est une contribution à la mise en place des plans simples de gestion dans les périmètres agricoles de la plaine du Haouz. Son objectif est de suivre la dynamique des formations végétales et les surfaces d'eau dans le temps et dans l'espace. Pour cela, les changements dans la couverture terrestre seront suivis sur une période de 30. Le couvert végétal sera cartographié et évalué à partir du traitement numérique des données spatiales LANDSAT TM (1984, 1986, 2002, 2009 et 2010) et OLI (2014). Les cartes des indices de végétation, d'eau et du sol (NDVI, NDSI et NDWI) obtenues à l'issue des traitement ont permis d'identifier les changements au sein de la plaine.

La gestion de la couverture terrestre en terme de l'occupation du sol reste difficiles et couteuse ce qui nécessité de soutenir les stratégies disponibles par le biais de l'introduction de techniques géo-spatiales innovantes telles que NDVI, NDWI et NDSI pour renforcer la surveillance, la caractérisation et le suivi et la réponse des écosystèmes face aux changements climatiques et à l'évolution économique. Dans ce travail un certain nombre de questions et d'idées seront explorés à savoir:

- le changement de la couverture terrestre dans une zone donnée peut être pleinement compris ou expliqué par les algorithmes de classification des images et des indices de végétation?

- le niveau de propagation de la couverture terrestre peut être expliqué de manière adéquate à partir de données de télédétection?

- Y a-t-il la détection des changements spatio-temporels observés dans la zone d'étude, et dans quel sens se font-ils?

- Y a-t-il une corrélation entre les indices calculés (NDVI, NDWI et NDSI) à partir des données satellitaires et les données météorologiques et pluviométriques collectés?

Selon la réponse et le développement des questions et idée cité ci-dessus, les objectifs suivants sont fixés pour cette étude :

- Etudier l'utilisation du NDVI, NDSI et NDWI pour analyser la détection du changement du couvert végétal.

- Etablir des cartes des types de végétation qui persistent dans la zone d'étude et élaborer une carte d'occupation du sol de la plaine du Haouz.

- Détecter et analyser les changements de l'occupation du sol depuis 1984 jusqu'à 2014.

- Examiner les performances de détection des changements dans la zone d'étude.

Chapitre I :

Généralités sur La zone d'étude

Présentation générale du bassin versant du Tensift et de la plaine du Haouz :

I. Contexte géographique et population:

Situé au centre ouest du Maroc (*Fig. 1*), le bassin de Tensift couvre une superficie d'environ 18200 Km^2 , entre le $31^{ièm}$ et le $32^{ièm}$ degré de latitude nord. Entre le Haut Atlas de Marrakech au Sud et les collines des Jebilets au Nord. Les oueds les plus importants prennent tous naissance dans le Haut Atlas. Sur ce relief montagneux à structure et nature géologique hétérogène, des ruissellements à caractère torrentiel interviennent et sont collectés par le réseau hydrographique du Tensift qui les évacue vers l'océan Atlantique.

Fig. 1 : Situation géographique du bassin versant de Tensift

Le bassin versant de Tensift montre dans sa partie centrale la plaine du Haouz. C'est une grande dépression qui s'étire sur une longueur de 150 Km d'Est en Ouest, elle s'étend sur une superficie d'environ 6000 Km². La plaine est traversée du Sud vers le Nord par plusieurs oueds drainant les reliefs du Haut Atlas et rejoignent le collecteur principale des eaux de surface oued Tensift au Nord (*Fig. 1*).

Le relief de la plaine du Haouz est très peu marqué avec des pentes ne dépassant pas 5%.

L'altitude est de 900 m au niveau des contreforts de l'Atlas et diminue progressivement vers le nord, pour atteindre environ 300 m au niveau de l'oued Tensift (*Fig. 2 et 3*). La végétation montre deux grands types des paysages au sein de la plaine du Haouz :

1/ Le domaine irrigué de la plaine du Haouz occupant les parties orientale et centrale du Haouz, de la limite Est du bassin versant jusqu'à l'oued N'Fis, et se prolonge au sud jusqu'au

piémont de l'Atlas au niveau de la vallée de l'Ourika. Outre les cultures annuelles (céréales, maraîchage), on rencontre de nombreuses cultures pérennes telles que l'olivier, les agrumes et l'abricotier.

2/ Le Haouz occidental: seules quelques forages permettent l'irrigation. Les cultures principales (blé, orge) sont pluviales, on parle généralement de zone de Bour. L'absence d'irrigation dans cette partie du Haouz est liée à la faible disponibilité de la ressource en eau.

Fig.2 : Carte des pentes (en %) du bassin versant Tensift

Fig.3 : Carte Hypsométrique du bassin versant Tensift

La plaine est limité au Nord les Jebilets aux reliefs peu accusés avec un maximum de 1060m, au Sud par le Haut-Atlas avec une altitude qui culmine 4165m à Toubkal (Fig.3), vers l'Est le Moyen-Atlas où passent les oueds El Abid et Tessaout. Vers l'Ouest, la série des collines de terrains phosphatés de Chichaoua (*Fig.4*).

La population de Marrakech Tensift Haouz est de l'ordre de 3102252 (recensement de 2004), très inégalement répartie et localisé essentiellement au niveau de la ville de Marrakech. L'économie dans la plaine est basée essentiellement sur l'agriculture et l'élevage. Par ailleurs, les activités industrielles et minières, le tourisme et l'artisanat occupent une partie assez importante de la population active. L'agriculture se caractérise par la prédominance de la céréaliculture et de l'arboriculture. L'irrigation occupe une place importante dans l'activité agricole du bassin.

Fig.4 : Situation géographique de la plaine El Haouz. (A) Localisation de la zone d'étude par rapport aux domaines structuraux du Maroc (image Landsat à 30m de résolution spatial). (B) Localisation de la plaine El Haouz dans le bassin versant Tensift.

L'histoire géologique du bassin du Haouz est marquée par la succession de plusieurs événements, initiés au début du mésozoïque, par l'arasement d'un socle paléozoïque fraichement structuré par l'orogenèse hercynienne. Le socle primaire a été arasé pendant le Secondaire et déformé par les premiers mouvements atlasiques. Les mouvements tectoniques tertiaires ont provoqué un fossé entre l'Atlas et les Jebilets par suite d'un jeu de fractures et de flexures (*Cochet et al, 1936*). Pendant la surrection de l'Atlas, à l'Oligo-Miocène et au Pliocène, les oueds ont accumulé les produits de démantèlement de la chaîne dans ce fossé, noyant les principales lignes architecturales. Ces accumulations sont :

Le Mio-pliocène est formé par des dépôts continentaux détritiques présentant de grande variation latérale de faciès et une épaisseur qui décroit en allant de vers le nord et l'ouest (*Chellai, 1995 ; Chellai et Perriaux, 1996*). On trouve ainsi un faciès argilo-gréseux au nord de la plaine (*Dutour et Ferrandinni, 1985*) qui devient essentiellement conglomératique à cément gréseux et marneux au sud. A l'Est (entre Ait Ourir et Oued Tessaout) le faciès est constitué de grès autant que de conglomérat (*Dutour et al, 1985 ; Sinnan, 1986*). Le Miopliocène constitue le substratum de la nappe phréatique avec une puissance importante d'argile et de marne au Haouz oriental. Les plissements atlasiques et les remblaiements successifs se sont terminés au Pliocène supérieur. Il s'est produit depuis une succession de cycles d'érosion fluviale. Les oueds atlasiques ont remanié les formations du Pliocène supérieur (*Cochet et al, 1936*);

Le villafranchien affleure tout le long de Tessaout traversant ainsi le Haouz oriental entre les Jebilets au Nord et l'embouchure de l'oued au Sud, constitué par des conglomérats polygéniques, des calcaires conglomératiques, des limons à nodules et de calcaires noduleux ou compact, organisés sous formes de cônes de piémonts qui passent latéralement en chenaux temporaires (*Freytet, 1984 ; Dutour et al, 1985*) ;

Les dépôts quaternaires sont issus de démantèlement de la chaine atlasique par un réseau d'oueds descendant de l'Atlas et parcourant l'ensemble de la plaine du Haouz. Les sédiments quaternaires sont représentés par les limons rouges, les argiles et les cailloux dans le Haouz oriental et central et par les conglomérats et les alluvions au niveau des rives des oueds. Alors que dans le Haouz occidental, le quaternaire est présenté par des dalles calcaires ;

Le quaternaire récent est constitué de limons ocre du Soltanien, qui couvre de grandes étendues du Haouz central et oriental, on trouve aussi les formations limoneuses grises et des galets déposés par les oueds atlasiques (*Abourida*, 2007) ;

Fig.5 : Carte géologique simplifier du Haouz (D'après la carte géologique 1/500000 de Marrakech, Modifié)

Fig.6 : Coupe géologique au niveau de la plaine d'el Haouz (Ambroggi et Thuile, 1952)

II. Cadre hydrogéologique et hydrologique :

Le bassin versant de Tensift montre un réseau hydrographique avec deux systèmes : - Dans la partie occidentale, oued Tensift coule *d'E* en *W* dans la plaine du Haouz au pied des Jbilet, Il reçoit comme un collecteur les oueds Nfis, Reraya, Ourika, Zat et R'dat qui descendent du versant Nord de l'Atlas (*Fig.7*).

 Dans la partie orientale, oued Tessaout et son affluent l'oued Lakhdar descendent du versant Nord de l'Atlas et quittent le Haouz par une trouée dans les Jbilet pour aller rejoindre l'Oued Oum Er Rbia.

Les oueds ont un régime qui reflète l'irrégularité des pluies sur le bassin versant. La plus grande partie des débits passe sous forme de crues provoquées par de fortes pluies. Les eaux d'étiage et une partie des eaux de crues alimentent des séguias servant à l'irrigation dans la plaine du Haouz. Une autre partie s'infiltre ou s'évapore. La plus grande partie des eaux de crues quitte le Haouz par l'oued Tensift ou par la trouée de l'oued Tessaout dans le massif des Jebilets.

Fig.7 : Les principales entités hydrologiques dans le bassin Versant Tensift

Du point de vue hydrogéologique, l'absence des formations calcaires du Secondaire ou du Tertiaire en surface de la plaine et responsable de l'absence de nappes. Seules les formations continentales renferment une nappe importante et généralisée : la nappe phréatique (*Fig.8*).

La perméabilité moyenne diminue à mesure que l'on s'enfonce, les faciès devenant de plus en plus argileux (*Cochet et al 1936*).

Les zones d'alimentation de la nappe sont : le débouché des Oueds Atlasiques, entre Imi n'Tanout et Oued Lakhdar, qui participent directement à la recharge de la nappe en raison des caractéristiques des dépôts fluviaux qui les constituent. Dans le Haouz oriental, entre Tessaout et Oued Lakhdar, les calcaires jurassiques se biseautent sous l'aquifère récent formant une surface d'abouchement avec la nappe phréatique. Au front d'infiltration, après ruissellement sur les bassins versants à faible extension, comme c'est le cas de Tamsloht dans le Haouz central et des cônes d'éboulis compris entre Rhéraya et Ourika (*Bernert et al, 1972*). Recharge par le retour des eaux d'irrigation au niveau des périmètres irrigués et enfin l'alimentation par les eaux de pluies.

Les productivités de la nappe sont généralement bonnes. Elles sont de quelques litres par seconde et peuvent atteindre par endroit 50 l/s, mais en se rapprochant de la zone piémontaise, elles deviennent de plus en plus faibles. La surface libre s'établit en moyenne à 30 m sous le niveau du sol, mais se situe entre 5 à 10 m le long de l'Oued Tensift et peut descendre jusqu'à 80 m le long du piémont de l'Atlas. Dans les zones où l'eau souterraine fait l'objet d'une exploitation intensive, elle s'établit aux environs de 40 à 50 m.

Les potentialités de recharge de la nappe phréatique sont actuellement totalement mobilisées, voire surexploitées par prélèvement dans les réserves propres de l'aquifère suite au développement hydro-agricole que connaît la plaine du Haouz et l'exploitation intensive des eaux souterraines qui s'en suit. La Figure 9 montre globalement une baisse significative du niveau de la nappe durant ces seize dernières années pouvant atteindre parfois 10 m dans certaines régions (*Berrazouk et al 2004*).

Fig. 8 La nappe plio-quaternaire du Haouz

Fig. 9 : Variation du niveau de la nappe d'el Haouz depuis 1986 jusqu'a 2002 (*Berrazouk et al, 2004*)

Ainsi, le pompage est devenu structurel à la suite du développement des superficies irriguées durant les 20 dernières années. Il existe actuellement quelques 11.500 stations de pompage dans le Haouz, ce qui représente une densité de 2,2 par km².

III. Pédologie :

La plaine du Haouz dispose de grand potentiel en terme de sol issus des vastes cônes de déjection caillouteux et conglomératiques, à limons et argiles profonds encroûtés par endroit (Eddahby, 1996). Les sols du Haouz sont développés sur des alluvions quaternaires dans la cuvette de subsidence enclavée entre les reliefs primaires des Jbilet et le Haut Atlas. Les sols profonds à très profonds reposant sur des limons récents de texture équilibrée recouvrant par endroit un lit de cailloutis non cimenté ce sont les sols isohumique, ils couvrent presque 65% de la superficie total de la plaine, et ils sont observés sur une profondeur de 100 à 120 cm. Parmi ceux-ci on peut distinguer 3 groupes selon *Mougenot* (2005) : les sols châtains, les sols bruns et les sols sierozems (*Fig.10*).

Fig. 10: Carte pédologique de la plaine d'el Haouz (Direction de l'agriculture du commerce et des forets, 1951)

A l'aval des piémonts de l'Atlas, un autre type du sol appelé fersiallitique se développe, il est issu principalement des matériaux du socle granitique. La formation de ses sols est favorisée par la pluviosité intense sur les versants atlasiques et par une pente plus prononcé qui engendre le drainage. Les sols peu évolué sont rencontrés le long du lit de l'Oued. Ils sont formés de dépôts alluvionnaires récents de texture grossière. Ils tapissent en particulier les anciens lits d'oued (Rhmat, Zat, Ourika, N'fis et Tessaout). Localement ces sols sont appelés HRECH, couvrant à peu prés 10% de la superficie totale de la plaine.

Les conditions climatiques actuelles du Haouz caractérisées par leur aridité et leur agressivité ne permettent pas le maintien d'une couverture végétale continue et d'une certaine humidité dans le sol et par conséquence la pédogénèse est très lente.

IV. Contexte climatique :

Le climat de la plaine est de type continental semi-aride et sur la majorité du bassin, avec des spécificités sur la frange côtière (influencée par le courant froid des Canaries) et la chaîne montagneuse du Haut-Atlas au sud, où la majorité des précipitations est concentrée.

La pluviométrie y est faible, partout inférieure à 300 mm, et de plus irrégulière dans le temps et l'espace. La température est très élevée en été (37.7° C en moyenne des maxima) et basse en hiver (4.9 °C comme moyenne des minima). L'évaporation potentielle est très importante (ET0 = 2300 mm/an), La demande évaporatoire est très importante, avec un cumul annuel d'environ 1500 mm (*Duchemin et al. 2006, Er-Raki et al. 2007*).

V. Irrigation et occupation du sol :

Le mode d'irrigation comprend une dominance du système gravitaire qui couvre une superficie de 304 000 ha et 5100 ha pour le système localisé, 2000 ha sont répartis entre l'irrigation par aspersion et pivot. La superficie totale irriguée dans le bassin s'élève à près de 200.000 ha avec des besoins en eau évalués à $1.310 \text{ Mm}^3/\text{an}$.

Dans la zone irriguées ou en pluviales qui se situe dans la partie orientale et centrale du Haouz, de la limite Est du bassin versant jusqu'à l'oued N'Fis, et se prolonge au sud jusqu'au piémont de l'Atlas au niveau de la vallée de l'Ourika, les cultures annuelles de blé et d'orge constituent les principales productions de céréales de la région et occupent environ 15 000 ha. Les cultures céréalières et fourragères, les oliviers et les agrumes sont les cultures dominantes dans la plaine du Tensift (environ 80 % des terres arables). Les autres types de cultures sont des cultures maraîchères, des fruitiers à feuilles caduques (pommiers, pêchers, abricotiers) et la vigne.

Dans la partie occidentale du Haouz, seuls quelques forages permettent l'irrigation. Les cultures principales (blé, orge) sont pluviales : on parle généralement de zone de Bour. L'absence d'irrigation dans cette partie du Haouz est liée à la faible disponibilité de la ressource en eau (*Tab.1*).

La tendance à la sécheresse ces dernières décennies a entraîné une surexploitation des eaux consommées par les surfaces irriguées ayant connu une forte extension pendant les trois dernières décennies d'où l'importance de la connaissance des caractéristiques

hydrodynamiques des sols pour une gestion durable de l'eau d'irrigation dans la plaine de Haouz.

Les ressources en terre dans la plaine montrent une superficie agricole utile de 473.000 hectares, dont 273.000 Ha sont irrigués et 200.000 ha de Bour. Les Forêts occupent 23.200ha et les Parcours 103.700 Ha.

Périmètre	Superficie en	Dotation en	Origine	Dotation en
	Ha	<i>Mm</i> ³		m ³ /Ha
Tassaout amont	52.000	250	Barrage My Youssef	Secteur moderne : 6000 Secteur Réalimenté: 3000
Tassaout aval	44.000	280	 Barrage My Youssef :10 Mm3 Barrage Hassan 1er sidi Driss : 20 Mm3 Barrage Bin El Ouidane : 235 Mm3 Retour à oued (seuil Boualja) : 15 Mm3 	Planté:7900 Nu : 4900
Haouz central	48.600	338	- Barrage Hassan 1er sidi Driss : 256 Mm3 - Barrage Lalla Takerkoust : 82 Mm3	6000 à 8000
Total	144.600	868		

Tab. 1 : Ressources en Eau d'irrigation : les eaux superficielles (source : ORMVAH)

Tab.2 : Ressource en Eau d'irrigation : les eaux souterraines (source : ORMVAH)

Haouz central	205 Millions de m3
Tassaout	65 Millions de m3
Total	270 Millions de m3

Il faut noter que les ouvrages exploités pour l'alimentation en eau potable des villes et petits centres urbains sont bien connus dans la plaine du Haouz et le volume des eaux souterraines pompées est reconnu dans quelques petites et grandes villes. Par contre, ceux exploités pour l'irrigation des surfaces agricoles, pour l'approvisionnement en eau du bétail ou alors par les particuliers en zone urbaine ne peuvent être qu'estimés. Chapitre II :

Matériel et Méthode de travail:

I. Principe de la télédétection et notion de réflectance

1. Principe et domaine d'application :

La télédétection est définie comme « l'ensemble des connaissances et des techniques utilisées pour déterminer des caractéristiques physiques et biologiques d'objets par des mesures effectuées à distance, sans contact matériel avec ceux-ci» (*Commission française interministérielle de terminologie de la télédétection aérospatiale, 1988.*). C'est en fait l'étude de l'information véhiculée par le rayonnement visible, infrarouge et Radar du spectre électromagnétique provenant de la surface de la terre et captée par les appareils aérospatiaux évoluant à distance convenable de cette dernière (*Fig. 11*). Ceci est rendu possible par le fait que les objets étudiés (plantes, maisons, surfaces d'eau, sol nu ou masses d'air) émettent ou réfléchissent du rayonnement à différentes longueurs d'onde et intensités selon leur état. Certains instruments de télédétection utilisent des ondes sonores de façon similaire, et d'autres mesurent des variations dans des champs magnétiques ou gravitaires.

Fig.11 : Principe de la télédétection (Source : <u>http://www.alertes-meteo.com</u>)

En raison de contraintes technologiques ou physiques, et notamment des propriétés de transparence de l'atmosphère (*Figure 12*), la télédétection spatiale n'utilise qu'une partie du spectre électromagnétique, on distingue les domaines solaire (λ =0.38 à 3 µm), infrarouge thermique (λ =3 à 1000 µm), et micro-onde (λ = 10-3 m à 0.3 m).

Quand les spectres d'absorption des gaz de l'atmosphère sont combinés, il reste des fenêtres de faible opacité, autorisant le passage de certaines bandes lumineuses (Fig. 12). La fenêtre optique va d'environ 300 nm (ultraviolet) jusqu'aux longueurs d'onde que les humains peuvent

voir, la lumière visible (communément appelé lumière), à environ 400–700 nm et continue jusqu'aux infrarouges vers environ 1100 nm. Il y a aussi des fenêtres atmosphériques et radios qui transmettent certaines ondes infrarouges et radio sur des longueurs d'onde plus importantes.

Fig. 12 : Diagramme montrant la transmission (ou opacité) atmosphérique de la Terre à diverses longueurs d'onde et radiation électromagnétique (source : NASA (original); SVG by Mysid)

Les applications terrestres de la télédétection sont extrêmement variées. La photographie aérienne, sous toutes ses formes, est encore, sans doute pour peu de temps, le moyen le plus usuel de télédétection spatiale, les photographies aériennes sont de plus en plus utilisées sous forme numérique de façon à permettre leur correction géométrique et leur intégration dans les Systèmes d'Information Géographique. En télédétection spatiale, ce sont surtout les radiomètres optiques à haute ou très haute résolution qui sont utiles pour les applications terrestres. Depuis 1972, les progrès dans ce domaine sont remarquables : on est passé d'une résolution de 80 m (MSS de Landsat), à 30 m (Thematic Mapper), à 20 et 10 m (HRV de SPOT), IKONOS, et autre avec une résolution de moins d'un mètre. En géologie ou pour l'étude de la végétation, les radars imageurs, surtout aéroportés, sont aussi très utilisés. Le champ des utilisations de la télédétection ne cesse de s'élargir : cartographie, géologie et prospection minière, mais aussi surveillance des cultures ou du couvert forestier, urbanisme, aménagement, génie civil, etc. (*Tab. 3*).

Le traitement de l'imagerie satellitaire numérique est une discipline en constant développement, et la baisse du coût des outils informatiques a entraîné une augmentation rapide du nombre des utilisateurs.

Tab.3 : Domaine d'application de	la Télédétection
----------------------------------	------------------

Vecteur	Capteur	Domaine d'application

TELEDETECTION DE l'ATMOSPHÈRE (Météorologie, Climatologie):

	Basse et moyenne résolution (on	Etude de la nébulosité
Satellites géostationnaires	privilégie la répétitivité et la	Mesure des températures
(Météosat).	couverture spatiale).	Vapeur d'eau et précipitations
Satallitas à dáfilament	Capteurs passifs: visible, infrarouge,	Eléments du bilan radiatif
Satemes a demement	microondes.	
(NOAA).	Sondeurs atmosphériques.	
	Dans le futur : radars	
	pluviométriques,	
	lidars (capteurs à laser).	

OCÉANOGRAPHIE ET ETUDES LITTORALES

	Toutes résolutions selon les espaces	Analyse de la couleur de l'océan	
Avions. Satellites	considérés (de l'océanographie	(production biologique, turbidité).	
mátáorologiques ou de	côtière à l'océanographie globale).	Mesures des températures de surface	
meteorologiques ou de	Capteurs passifs : visible,	de la mer.	
télédétection terrestre,	infrarouge, microondes.	Vagues et vents. Altitude de la	
Satellites spécialisés	Radars imageurs, radar-altimètre,	surface (dynamique de l'océan).	
(Nimbus, Seasat, ERS-1).	diffusiomètre.	Glaces de mer.	
APPLICATIONS TERRESTRES			
	Surtout haute et très haute résolution	Cartographie régulière et thématique	
Avions. Satellites à défilement	spatiale :	Géologie, prospection minière,	
an arbita polaira (Landaat	Photographie aérienne.	géomorphologie.	
en orone porarie (Landsat,	Capteurs passifs : radiomètres à	Hydrologie, neige, risques naturels.	
SPOT).	balayage (domaine optique).	Agriculture, sylviculture.	
	Capteurs actifs : radars imageurs.	Urbanisme. Aménagement, génie	
		civil.	

2. La notion de réflectance :

On introduit ainsi la notion de facteur de réflectance bidirectionnelle (*Fig. 13*), que l'on nomme souvent réflectance par souci de simplification qui décrit la capacité d'une surface à réfléchir le rayonnement (*Bonn and Rochon, 1992*). Elle est définie pour une certaine gamme de longueur d'onde λ par la formule suivante:

$$\mathbf{R}\lambda = (\theta_i, \, \phi_i, \, \theta_r, \, \phi_r) = \pi.\mathbf{L}\lambda(\theta_r, \, \phi_r) / \mathbf{E}_i\lambda(\theta_i, \, \phi_i)$$

Avec :

$E_{i\lambda}(\theta_{i},\phi_{i})$:	éclairement incident du soleil suivant la direction (θ_i, ϕ_i).
$L_{\lambda}(\theta_r,\phi_r)$:	luminance mesurée dans la direction d'observation (θ_r, ϕ_r).
$\theta_i, \phi_i, \theta_r$ et ϕ_r :	angles zénithaux et azimutaux solaire et de visée.

Fig.13 : Géométrie de mesure de la réflectance (GDTA 1991).

Les différents éléments constitutifs de la surface terrestre réfléchissent différemment le rayonnement d'origine solaire. Ces différences proviennent des propriétés de réflexion, d'absorption et de transmission des éléments présents à la surface (cristaux de roches, particules des sols, organes de la végétation, cristaux de neige, molécule d'eau...), ainsi que de leurs agencements (densité, texture, structure et géométrie).

En fonction de la nature et des caractéristiques intrinsèques des objets et des surfaces, le rayonnement incident interagira avec la cible selon l'une ou l'autre des propriétés citées précédemment, ou de manière générale selon une combinaison de ces propriétés. Chaque surface possède ainsi une signature spectrale (quantité d'énergie émise ou réfléchie en fonction de la longueur d'onde) qui lui est propre et qui permettra son identification sur les images satellitaires. Pour mieux illustrer, la figure 14 montre quatre exemples de spectres de réflectance (signature spectrale) très contrastés sur cette figure on note que :

Fig.14 : Spectres typiques de réflectance de la neige, de l'eau, du sable et de la végétation. (Source : ENVCAL – Suivi de l'environnement par télédétection)

- la neige est très élevée dans le visible et le proche infrarouge (> 90 %). Elle diminue à partir de 1 μ m pour atteindre des valeurs très faibles dans le moyen infrarouge à 1.55 μ m ;

- l'eau absorbe la majorité du rayonnement reçu quelle que soit la longueur d'onde (réflectance < ~10 %). La réflectance diminue progressivement avec la longueur d'onde pour atteindre des valeurs quasi-nulles dans le proche infrarouge après 0.9 μ m ;

- la réflectance du sable, et plus généralement celle des sols nus, est faible aux courtes longueurs d'ondes, puis augmente quasi-linéairement (valeurs inférieures à 5 % dans le bleu et autour de 20 % dans le proche infrarouge) ;

- le comportement de la végétation « verte » est typique, avec une forte absorption dans le visible, et en particulier dans le rouge et le bleu, pour la photosynthèse, et une très forte réflectance dans le proche infrarouge (jusqu'à 50%).

3. Fonctionnement des capteurs :

La fonction d'un capteur consiste à détecter le signal radiatif émis ou réfléchi par la surface et à l'enregistrer soit sous forme analogique (document qualitatif interprétable), soit sous forme numérique (données quantitatives susceptibles d'être calibrées pour accéder aux grandeurs physiques, luminance ou réflectance).

Entre la phase de réception du rayonnement et la phase de stockage, on distingue quatre systèmes (*Fig. 15*):

- un système de réception comportant un télescope servant d'objectif;

- une source de calibration et un spectromètre comprenant différents détecteurs;

- un amplificateur pour accroître le signal;
- un système d'enregistrement qui transforme le signal reçu en signal numérique.

Fig.15 : Schéma général d'un capteur (Girard, 1999)

Le processus d'acquisition se fait selon deux directions (*Fig. 16*), la première est celle de l'avancement de la plateforme et définit les lignes de l'image (direction parallèle à la trace du satellite ou in-track), la deuxième est la direction perpendiculaire à la première et définit les colonnes de l'image (direction cross-track). Précisément, le capteur observe la scène sous un angle appelé champ de vue (FOV: Field Of View), qui intervient dans la définition de la largeur du champ d'observation (GFOV: Ground Field Of View). Ce processus entraîne la formation d'une image, qui possède des caractéristiques de nature spatiale, temporelle, directionnelle et spectrale. Ces caractéristiques dépendent de l'orbite sur laquelle évolue la plateforme spatiale, des propriétés des capteurs et des conditions d'observations.

Fig.16 : Mesure dans le plan d'avancement du capteur (Garrigues 2004)

II. Matériel de travail et apport de la télédétection

1. Présentation des données utilisées :

a) Les images satellitaires à haute résolution spatiale :

Nous avons utilisés deux types d'images satellites à haute résolution spatiale issues des capteurs Landsat TM (Thematic Mapper) et Spot HRVIR (Haute Résolution Visible et Infrarouge). Chaque capteur a ses propres caractéristiques (orbite, résolution spatiale et temporelle et bande spectrale...) (*Tab. 4 et 5*).

Tab.4 : Caractéristiques du capteur Landsat TM (http://landsat.gsfc.nasa.gov/).

1 ^{er} Lancement	1984
Altitude	705 Km
Orbite	Quasi-polaire Héliosynchrone
Heure de passage à l'équateur	9 :35 a.m.
Statut satellite	Achevé en 2013
Résolution spatiale	30m en multispectrale

Tab.5 : Caractéristiques du capteur HRVIR embarqué sur la plate forme SPOT-4 (www.cnes.fr).

1 ^{er} Lancement	1998
Altitude	830 Km
Orbite	Quasi-polaire Héliosynchrone
Heure de passage à l'équateur	10 :30 a.m.
Statut satellite	Achevé en 2013
Résolution spatiale	20m en multispectrale

Le capteur Thematic Mapper (TM) observe dans 7 bandes spectrales en lumière visible et infrarouge avec une résolution spatiale de 30 mètres (120 mètres sur la bande 6), une bande spectrale désigne une partie du spectre électromagnétique (intervalle de longueur d'onde) que laisse passer un filtre standard. Une bande spectrale est ainsi déterminée par son profil de transmission, c'est-à-dire la fraction de l'intensité lumineuse transmise pour une longueur d'onde donnée. Un ensemble de filtres de bandes spectrales différentes, et couvrant généralement, la partie "visible" du spectre électromagnétique. Le capteur TM du satellite américain Landsat a pu capter des parties de sol vues par une petite fenêtre qui ne permet de voir que les rayons du soleil qui correspond à cette partie du spectre étudiée. Ceci dit, chaque bande spectrale qui a été captée par le capteur TM voit la terre à sa façon et donne alors une image différente des autres. L'appellation Thematic Mapper provient de la capacité de ce
capteur à fournir des données qu'on peut traiter et analyser à fin d'obtenir des cartes thématiques (agriculture, hydrologie...). Ce capteur couvre toujours une zone de 185 km sur 185 km dite Scène. Le tableau ci-dessous résume les caractéristiques des bandes spectrales de Landsat TM utilisées dans ce travail : *Tab.6 : Les bandes spectrales de Landsat TM.*

	Longueur d'onde		
Bandes	(µm)	Caracteristiques	
		Bleu-Vert. Maximum de pénétration dans l'eau, très utile en cartographie	
		bathymétrique dans l'eau peu profonde et aussi pour distinguer le sol et la	
		végétation, le bleu (0.4-0.5 µm) est très diffusé par l'atmosphère, l'image	
TM1	0.45 - 0.52	présente un aspect brumeux. Il pénètre mieux sous l'eau. Cependant, il peut	
		être utilisé pour la discrimination du sol / végétation et l'identification de zones	
		de bâti, comme l'aéroport dans le secteur supérieur de l'image	
		Vert. Coïncide avec le maximum de réflexion de la végétation dans le domaine	
		visible. Pénètre dans l'eau claire assez bien et donne un excellent contraste	
TM2	0.52 - 0.60	entre l'eau claire et trouble (boueuse), et identifie le bâti. La diffusion	
		atmosphérique du rayonnement vert est beaucoup moins forte que celle du	
		bleu. Les images sont plus nettes.	
		Rouge. Coïncide avec la bande d'absorption de la végétation, importante dans	
		la discrimination des types de végétation. Il s'agit du rayonnement le plus	
		absorbé par la végétation vivante et le plus fortement réfléchi par les surfaces	
TM3	0.63 - 0.69	du sol comme le sable ou les secteurs bâtis. Les contrastes entre secteurs	
		boisés et déboisés sont très forts en printemps, mais peu de nuances sont	
		visibles à l'intérieur des unités de végétation.	
		PIR est fortement réfléchi par la végétation verte vivante et totalement absorbé	
		par l'eau. Le contraste entre la végétation et l'eau est maximum dans cette	
TM4	0.76 - 0.90	bande. Les surfaces du sol absorbent plus le PIR que le visible et apparaissent	
		donc plus sombres. La réflexion varie selon les espèces végétales.	
		MIR1. Forte sensibilité aux radicaux OH- et intéressante pour l'interprétation	
		structurale. Fourni le bon contraste entre les différents types de végétation. Il	
TM5	1.55 – 1.75	est aussi utile de mesurer le contenu d'humidité de sol et la végétation. Il aide à	
		discriminer les minéraux d'altérations qui accompagnent les métaux précieux.	
		IR thermique. Les images prises durant la nuit sont utiles en cartographie	
		thermique et pour l'estimation de l'humidité du sol. les objets ici sont	
		discriminés par leur température propre (émission). Il est utilisé pour observer	
TM6	10.4 – 12.50	la température et ses effets, comme les variations quotidiennes et saisonnières.	
		Il est aussi utiliser pour identifier la densité de végétation, l'humidité et le type	
		de couverture.	
		MIR2, Discrimination des formations géologiques, et détermination des zones	
TM7	2.08 - 2.35	ayant subit une altération hydrothermal. (M. Herbei et al.)	

Fig.17 : La différence de signature spectrale entre la végétation, l'eau et le sol nu selon les bandes du Capteur Landsat TM (Zone Agdal, Marrakech)

Bandes	Eau	Végétation	Sol nu
1	110	105	164
2	57	53	92
3	60	54	115
4	41	107	109
5	44	118	177
6	144	152	159
7	24	49	107

Tab.7 : les valeurs du Pixel de chaque espèce selon les bandes du Capteur TM

Le Capteur HRVIR du satellite français Spot, quant à lui, il montre chaque objet avec plus de réflectance d'une bande à l'autre selon ces caractéristiques spectrales, ce qui permet de mettre en évidence le contraste entre les thèmes de la surface terrestre.

Fig.18 : La différence de signature spectrale entre la végétation, l'eau et le sol nu selon les bandes du Capteur Spot HRVIR (Agdal, Marrakech)

Le système SPOT (Satellite Pour l'Observation de la Terre) est un système d'imagerie optique spatiale à haute résolution. Il est opérationnel depuis 1986, avec 5 missions lancées (SPOT -1 à 5), dont 3 sont encore opérationnelles de nos jours (SPOT-2, 4 et 5). Chaque mission comporte deux instruments dont le champ de vue est de 60 km et la résolution spatiale de 20 m pour SPOT-4 (*Tab. 8*) et de 10 m pour SPOT-5. Chaque instrument peut indifféremment acquérir des images en mode panchromatique (P) ou multi spectral (XS) (en 3 bandes : Vert, Rouge, Infrarouge) de façon indépendante ou simultanée. Les caractéristiques des bandes du capteur HRVIR embarqué sur la plateforme SPOT-4 sont présentées dans le tableau suivant :

Bande	Bandes spectrales	Longueurs d'ondes	Résolution
1	Vert	0.50-0.59 μm	20 m
2	Rouge	0.61-0.68 µm	20 m
3	Proche Infrarouge	0.79-0.89 µm	20 m
4	Moyen Infrarouge	1.58-1.75 μm	20 m

Tab.8 : Caractéristiques des Bandes spectrales du capteur HRVIR

Fig.19 : La plaine du Haouz, (A) Image Landsat False colore à résolution spatial 30m, (B) image Spot à résolution spatial 20m.

Fig. 20 : Relations entre le Champ de prise de vue des capteurs, la résolution spatiale des images et la répétition des observations (Source : <u>https://www.rncan.gc.ca/sciences-terret</u>)

Le capteur OLI (*Operational Land Imager*) de Landsat8 qui a été lancé le 11 février 2013, il acquiert des images dans neuf bandes spectrales allant du visible au moyen infrarouge. Sept de ces bandes spectrales étaient déjà présentes sur la version précédente de l'instrument TM de Landsat, Deux canaux supplémentaires ont été ajoutés, destinés principalement à la correction atmosphérique (canal bleu à 440 nm) et à la détection des nuages (1380 nm). La résolution optique est de 30 mètres sur toutes les bandes sauf sur la bande panchromatique (15 m).

Pour comparer les images du capteur TM et celle du OLI, il faut qu'elles présentent les mêmes caractéristiques spectrales et surtout la résolution et de la performance radiométrique, cette dernière est quantifiée sur une plage dynamique de 12 bits sur le nouveau capteur (Cela se traduit par 4096 niveaux de gris potentiels dans une image par rapport à seulement 256 niveaux de gris de 8 bits instruments précédents), cela permet d'améliorer le signal de bruit pour une meilleure caractérisation de l'état de la couverture terrestre. Les produits d'OLI sont livrés sous forme d'images de 16 bits (55 000 à l'échelle des niveaux de gris).

Le tableau suivant montre l'équivalence entre les bandes des images de la version précédente de Landsat4-5 TM et la nouvelle génération de Landsat8 OLI :

				Performance
Bandes	Bandes spectrales	Longueurs d'ondes	Résolution	radiométriqu
				е
1	AérosolsBleu	 0,433 - 0,453 μm 0.45 - 0.52 μm 	30 m	
2	BleuVert	 0,450 - 0,515 μm 0.52 - 0.60 μm 	30 m	
3	VertRouge	 0,525 - 0,600 μm 0.63 - 0.69 μm 	30 m	
4	 Rouge Infrarouge proche 1	 0,630 - 0,680 μm 0.76 - 0.90 μm 	30 m	• 16 Rits
5	Infrarouge procheInfrarouge proche 2	 0,845 - 0,885 μm 1.55 - 1.75 μm 	30 m	• 8 Bits
6	Infrarouge moyen 1Infrarouge thermique	 1,560 - 1,660 μm 10.4 - 12.50 μm 	30 m	
7	Infrarouge moyen 2Infrarouge moyen	 2,100 - 2,300 μm 2.08 - 2.35 μm 	30 m	
8	• Panchromatique	 0,500 - 0,680 μm 	15 m	
9	• Cirrus	• 1,360 - 1,390 μm	30 m	

Tab.9 : Equivalence entre les bandes du capteur TM (en noir) et OLI (en rouge) de Landsat

Le choix des dates des images :

Le choix des images Landsat a été basé principalement sur leurs disponibilités dans les sites web de la NASA, Les capteurs satellitaires sont exposés habituellement aux effets atmosphériques (nuages, poussière et autres) ce qui rend la vision et l'interprétation de l'image parfois pénible. Nous avons fixé le mois juin de chaque année pour mettre l'accent sur la végétation qui endure toute l'année et les surfaces d'eau permanentes afin de suivre leurs évolutions dans le temps et dans l'espace. Par contre la végétation hivernale pousse partout dans le bassin versant même chose pour les flaques d'eau qui se prolongent irrégulièrement en tout endroit, cela ne reflètera pas d'une manière significative l'évolution des ces deux facteurs. Les images satellitaires sont aussi bien exposées en mois juin vu que l'atmosphère reste relativement claire, ce qui permet au capteur de prendre une image propre qui ne nécessite pas trop de correction atmosphérique pour la visualiser.

Tab.10 : Les principales métadonnées	des images Landsat utilisées	(Glovis.usgs.gov)
1 1	0	

Métadonnées	Date 1	Date 2	Date 3	Date 4	Date 5	Date 6
Landsat Scène Identifier	LT5202038 1984174 XXX02	LT5202038 1986163 XXX03	LT5202038 2002159 MTI00	LT5202038 2009199 MIS00	LT5202038 2010181 MPS00	LC8202038 2014160 LGN00
Capteur	Landsat 4-5 TM	Landsat 4-5 TM	Landsat 4-5 TM	Landsat 4-5 TM	Landsat 4-5 TM	Landsat 8 OLI
Date d'acquisition	1984/06/22	1986/06/12	2002/06/08	2009/06/24	2010/06/30	2014/06/09
Jour/Nuit	Jour	Jour	Jour	Jour	Jour	Jour
Start time	10:32:19.94 631	10:27:46.04244	10:40:22.25194	10:51:25.77181	10:54:28.69181	11:03:33.3981 333
Stop time	10:32:46.55 925	10:28:12.68681	10:40:48.86506	10:51:58.41468	10:54:55.30469	11:04:05.3984 505
Qualité d'acquisition	9	9	9	9	9	9
Qualité des bandes	9	9	9	9	9	9
Couverture nuageuse	0%	0%	0%	0%	0%	0,29%
Sun Elevation	62.04786116	61.44509037	64.09441695	66.22145801	66.19047788	68.91984758
Sun Azimut	99.69295954	99.7917979	103.23200331	104.8964231	104.87266288	108.79258952
Scène Centre Latitude	31.74953 (31°44'58"N)	31.76991 (31°46'11"N)	31.77021 (31°46'12"N)	31.74825 (31°44'56"N)	31.74924 (31°44'57"N)	31.74222 (31°44'31"N)
Scène Centre	-7.87295	-7.97178	-7.95778	-7.85330	-7.85387	-7.84877
longitude	(7°52'22"W)	(7°58'18"W)	(7°57'28"W)	(7°51'12"W)	(7°51'13"W)	(7°50'55"W)
Output Format	GEOTIFF	GEOTIFF	GEOTIFF	GEOTIFF	GEOTIFF	GEOTIFF
Projection des Cartes	UTM	UTM	UTM	UTM	UTM	UTM
Datum	WGS84	WGS84	WGS84	WGS84	WGS84	WGS84
Ellipsoïde	WGS84	WGS84	WGS84	WGS84	WGS84	WGS84
UTM zone	29	29	29	29	29	29
Orientation	NORTH_UP	NORTH_UP	NORTH_UP	NORTH_UP	NORTH_UP	NORTH_UP

Les Métadonnées affichées dans le tableau (*Tab. 10*) sont des informations numériques complémentaires et indispensables pour l'interprétation, la comparaison et le traitement des images satellitaires. D'autres informations comme l'élévation et l'azimut du soleil permettent de faire des corrections radiométriques et améliorer ainsi la réflectance des certains thèmes de

la surface de la terre. En effet, les images ainsi choisies ont une qualité très bonne avec un minimum de couverture nuageuse estimée à 0%.

b) Les images satellitaires à basse résolution spatiale :

A l'échelle de la planète, les satellites « grand champ » permettent de suivre les variations saisonnières et annuelles des couverts végétaux. Ils sont des outils irremplaçables et constituent une importante source d'informations pour mieux comprendre le fonctionnement de la biosphère. Aux échelles régionales, ils apportent une aide précieuse pour l'étude de la variabilité climatique sur le fonctionnement des écosystèmes et notamment le suivi de la désertification.

Dans cette étude on a fait recours aux images à basse résolution du spectroradiomètre imageur à moyenne résolution (MODIS) à bord des satellites TERRA de la NASA qui a été conçu pour l'étude et la surveillance de l'environnement au sens large (biosphère, hydrosphère, atmosphère). Avec une résolution spatiale de 250 m (Pour le rouge et l'infrarouge de 0,6 à 0,9 μ m). MODIS possède une très bonne résolution radiométrique (12 bits) et acquière les images de la surface du globe dans 36 bandes spectrales qui vont du visible (405 nm) à l'infrarouge thermique (14,385 μ m). Nous avons choisis des images de même période pour visualiser la dynamique de la végétation dans la plaine au cours de ces dernières années surtout après l'application de plusieurs projets qui visent l'agriculture et les espaces verts depuis 2009 (*Tab.11*).

Image	Date	Détail de l'image
1	2000 Juin 10 au Juin 25	UL: 32.77686° -9.84373°
	2009-Julii-10 au Julii-23	LR: 30.76913° -7.02586°
2	2010-Iuin-10 au Iuin-25	UL: 32.77686° -9.84373°
	2010-Juni-10 au Juni-23	LR: 30.76913° -7.02586°
3	2011 Juin 10 au Juin 25	UL: 32.77686° -9.84373°
	2011-Juni-10 au Juni-23	LR: 30.76913° -7.02586°
4	2012 Juin 00 au Juin 24	UL: 32.77686° -9.84373°
	2012-Juni-09 au Juni-24	LR: 30.76913° -7.02586°
5	2013-Iuin-10 au Iuin-25	UL: 32.77686° -9.84373°
	2015 Julii 10 du Julii 25	LR: 30.76913° -7.02586°
6	2014-Juin-10 au Juin 25	UL: 32.77686° -9.84373°
	2014-Juni-10 au Juni-23	LR: 30.76913° -7.02586°

Tab.11 : dates et coordonnées spatiales des images NDVI de MODIS (Terra) (MOD44 16-Day) utilisés.

Les images MODIS brutes recueillis du site de la NASA, sont des images en niveaux de gris en utilisant la formule:

NDVI_byte = (*NDVI_raw* * 200,0) + 50,0

Ceci nécessitera une simple transformation des valeurs radiométriques (Bites) en valeur réels de NDVI qui sont comprises normalement en -1 et 1 on utilise l'équation suivante :

$$NDVI_raw = (NDVI_byte - 50) / 200$$

c) Données expérimentales :

Dans le bassin versant Tensift et plus précisément dans la plaine du Haouz, plusieurs facteurs peuvent être à la source de la variation du couvert végétale et des surfaces d'eau depuis 1984 jusqu'à 2014.

Le climat : La végétation potentielle d'un endroit donné (ensemble des végétaux qui s'y développeraient en l'absence d'action humaine) est déterminée essentiellement par des facteurs abiotiques, notamment climatiques. Les données climatiques ont été collectées par le réseau de stations pluviométriques et météorologiques de l'ORMVAH et l'ABHT sur la période 1984-2014. Les noms des stations sont précisés dans la figure 21.

Fig.21 : Réseau des stations pluviométriques et météorologiques dans la zone d'étude

- La Pédologie : Les facteurs pédologiques (lié au sol) conditionnent la répartition des espaces verts dans la plaine du Haouz. La végétation s'enracine dans le sol et s'y nourrit en éléments minéraux. Alors toutes modifications des caractéristiques pédologiques (lessivage, extraction, changement de texture ...) au cours des ces dernières années peuvent affecter la densité de végétation. Une carte de répartition des sols a été élaborée pour cartographier ce facteur dans la plaine du Haouz. Ainsi le calcule de l'indice du sol à partir des images satellitaires Landsat TM va permettre de suivre l'évolution de ce paramètre depuis 1984 jusqu'à 2014. Ceci peut aider à expliquer la variation de la végétation dans la zone d'étude au cours de cette période.

- Les facteurs anthropiques : Certes, les pratiques agricoles ont été développés dans la plaine suite à la croissance démographique et à l'augmentation des investigations dans ce secteur pour couvrir les besoins de la plaine en produits agronomiques, les agriculteurs changent à chaque fois leurs récoltes en fonctions des aléas climatiques et de la demande du marché. L'examen des images satellites des différentes années permettra de savoir s'il y avait un grand changement des pratiques agricoles à l'échelle du bassin, cela peut être fait par l'étude de la signature spectrale de chaque espèce végétale et le suivi de son extension dans le temps et dans l'espace.

- Autre facteur qui contribuera à la régression des espaces verts et des surfaces d'eau est la propagation des agglomérations qui se prolongent dans toutes les directions au dépend de la végétation, cela sera valider par la délimitation des habitations via leur signature spectrale spécifique à partir des donnés de la télédétection spatiale.

2. Prétraitement des images satellitaires à haute résolution spatiale

Les images recueillies par les satellites sont, dans leur quasi-totalité, diffusées à la fois sous forme de reproductions photographiques et sous forme de données numériques. Cette seconde forme de diffusion est produite sur des supports magnétiques et elle bénéficie du perfectionnement actuel de la technologie des matériels d'affichage et de visualisation en couleur, ainsi que de l'abondance des logiciels de traitement informatique.

Les données des satellites LANDSAT sont fournies au niveau L1T, qui correspond à des données ortho-rectifiées. Ce prétraitement permet de corriger les distorsions dues au relief par un procédé de triangulation à l'aide d'un MNT de la zone couvert par l'image.

Les images brutes ainsi obtenues doivent subir d'autres corrections avant d'être l'objet de toute interprétation.

a) Correction géométrique :

Les corrections géométriques sert à corriger les distorsions géométrique de l'image, ces dernières sont dues à : la variation des paramètres du capteur (altitude, vitesse) ; la nonlinéarité dans le champ du capteur ; la réfraction atmosphérique ; la déformation due au relief ; la déformation dû à la vision panoramique du capteur et la déformation due à la courbure de la terre.

Les images de télédétection, ou tout plan cartographique, représentent un espace géographique. L'opération qui consiste à attribuer des coordonnées cartographiques aux pixels de l'image est appelée géoréférencement. L'opération qui consiste à exprimer les coordonnées d'une image dans le même référentiel d'une autre image est dite registration. Pour cette dernière opération, le référentiel peut être arbitraire. Au contraire, le géoréférencement d'une surface terrestre fait appel à un système de coordonnées lui-même rattaché à un système de projection terrestre. Notons que le géoréférencement proprement dit permet seulement d'exprimer les coordonnées d'une image dans un système de coordonnées cordonnées cartographiques sans aucune modification de l'image.

b) Correction atmosphérique :

Le signal radiométrique dépend de la réflectance de la surface terrestre mais aussi des effets de l'atmosphère qui interviennent au cours des deux trajets (descendant, du soleil vers la surface, et montant, de la surface vers le capteur) effectués par le rayonnement solaire à travers l'atmosphère. L'objet des corrections atmosphériques est d'extraire une information indépendante des effets de l'atmosphère, variables dans le temps et dans l'espace, et concernant la seule surface terrestre, qui est l'objet à étudier.

Une correction radiométrique est souvent réalisée dans les centres de traitement des distributeurs des images. Les images qu'on a utilisées proviennent du produit de données Niveau 1T (L1T) du site NASA (<u>http://landsat.usgs.gov/descriptions</u> for the levels of processing) qui offre une précision radiométrique systématique en incorporant des points de contrôle au sol, tout en utilisant un modèle numérique d'élévation (DEM) pour une précision topographique.

Le processus de traitement radiométrique se base sur des équations de conversion des nombres numériques calibrées (DNS) de chaque pixel aux unités absolues de rayonnement au-capteur spectral ce qu'on appel la radiance, et au réflectance au Haut-de-atmosphère (TOA) qui correspond au rapport de la luminance émise par une surface élémentaire sur l'éclairement total reçu (*Belhadj, 1998*). Ces conversions fournissent une base de comparaison normalisée des données en une seule scène ou entre les images acquises à des dates différentes ou par différents capteurs (*Chander et Markham, 2003. Chander et al, 2007*).

La capacité de détecter et quantifier les changements dans l'environnement de la terre dépend de capteurs qui peuvent fournir des données calibrés (exactitude et précision) et des mesures cohérentes des caractéristiques de la surface de la terre à travers le temps.

Le calcul de l'éclat au-capteur spectral est l'étape fondamentale dans la conversion des données d'image à partir de plusieurs capteurs et plates-formes en une échelle radiométrique commune physiquement significative. La calibration radiométrique du TM et des capteurs OLI consiste à remettre à l'échelle les chiffres bruts numériques (Q) transmises par le satellite aux numéros numériques calibrés (Qcal), qui ont la même échelle radiométrique pour toutes les scènes traitées. Nous avons procédé à un étalonnage radiométrique des valeurs des pixels de capteur OLI (enregistrés sur 16 bits) en une échelle de 8 bits identique à celui des images TM. (*Fig. 22 et 23*)

Fig.22 : L'image Landsat OLI Brute (16 Bits)

Fig.23 : image Landsat OLI avec un étalonnage radiométrique en 8 Bits

Les valeurs Qcal sont ensuite transformer à l'éclat au-capteur spectral (L λ) (*Fig. 24*) via les équations (1) et (2) suivantes (*Chander*, 2009) :

$$L\lambda = ((LMAX\lambda - LMIN\lambda) / (Qcalmax - Qcalmin)) (Qcal - Qcalmin) + LMIN\lambda$$
 (1)

Ou bien :

$$L\lambda = Gain \times Qcal + Biais$$
 (2)

Avec :

Lλ :	Radiance spectrale à l'ouverture de l'capteur [W / (m2 sr um)].
Qcal :	Valeur de pixel calibré quantifié [DN]
Qcalmin=	Valeur minimale quantifié calibré de pixel correspondant à LMIN λ [DN]
Qcalmax=	Valeur maximale quantifiée calibré de pixel correspondant à LMAXλ [DN]
LMINλ=	Spectral radiance au capteur qui est mise à l'échelle Qcalmin [W / (m2 sr um)]
LMAXλ=	Spectral radiance au capteur qui est mise à l'échelle Qcalmax [W / (m2 sr um)]
Gain=	Spécifiques à la bande de facteur d'échelle de gain [(W / (m2 sr um)) / DN]
Biais=	Précise-Band facteur de polarisation d'échelle [W / (m2 sr um)]

Une réduction de la variabilité scène à scène peut être obtenu en convertissant le rayonnement au capteur spectral de réflectance TOA exo-atmosphérique. Lorsque l'on compare les images des différents capteurs, il ya trois avantages à utiliser TOA réflectance lieu de rayonnement au-capteur spectral. En premier lieu, il supprime l'effet de cosinus de différents angles zénithaux solaires en raison de la différence de temps entre les acquisitions de données. D'autre part, compense la réflectance TOA pour différentes valeurs de l'irradiance solaire exo-atmosphérique due aux différences de bandes spectrales. Troisièmement, la réflectance TOA corrige la variation de la distance Terre-Soleil entre les différentes dates d'acquisition de données. Ces variations peuvent être importantes géographiquement et temporellement. La réflectance TOA est calculée selon l'équation (3):

$\rho\lambda = (\pi * L\lambda * d2) / (ESUN\lambda * \cos(\vartheta s))$ (3)

Avec :

ρλ=	TOA réflectance planétaire [sans unité]
π=	Constante mathématique égale à 3,14159 ~ [sans unité]
Lλ=	Radiance spectrale à l'ouverture de l'capteur [W / (m2 sr um)]
d=	Distance Terre-Soleil [unités astronomiques]
ESUNλ=	Irradiance solaire exo-atmosphérique moyenne [W / (m2 um)]
ϑs=	Angle zénithal solaire [degrés]

A noter que le cosinus de l'angle zénithal solaire est égal au sinus de l'angle d'élévation solaire. L'angle d'élévation solaire au centre de la scène Landsat est généralement stocké dans le produit fichier de l'image, ou récupérées à partir des interfaces en ligne USGS Earth Explorer ou Glovis dans les métadonnées de la scène respective (ces sites Web contiennent également le temps d'acquisition en heures, minutes et secondes). Le calcul de réflectance TOA nécessite la distance Terre-Soleil (d). Le tableau 1 de l'annexe présente en unités astronomiques pendant toute une année généré en utilisant les données de Jet Propulsion Laboratory (JPL).

La dernière colonne de tableau 23 de l'annexe 3 résume les irradiances spectrales Exoatmosphérique solaires (ESUN λ). (*Thuillier et al.*, 2003).

Fig. 24 : Transformation des images brutes en Radiance spectrale à l'ouverture du capteur (Ly) (Image (A) avant transformation, image (B) après transformation)

Enrichissement spectral (*spectral enhancement*) : Nous avons aussi effectué des améliorations radiométriques, spatiales et spectrales à fin de raffiner la valeur de chaque pixel, ce qui amènera à une interprétation visuelle des images plus claire et plus adéquate.

Fig.25 : Amélioration radiométrique de l'image Spot de la zone d'étude, (A) Avant streching, (B) Après streching.

Les fonctions de l'amélioration radiométrique traitent l'image en utilisant les valeurs de chaque pixel dans chaque bande. La technique d'amélioration radiométrique la plus utilisée est la technique d'étalement dynamique (contraste stretching) (*Fig. 25*). C'est un recadrage linéaire des valeurs des pixels effectué par défaut par les logiciels de traitement, le visualisateur applique un étalement linéaire de (2* l'écart type). Ceci signifie que des pixels ayant des valeurs numériques en dehors de l'intervalle [moyenne $-2 * \sigma$, moyenne $+ 2*\sigma$] sont affichés avec 0 et 255 respectivement (*Fig. 26*). Ceci n'entraîne pas de distorsion de la radiométrie, il sont utilisés pour l'amélioration visuelle et l'analyse d'image.

Fig.26 : Histogrammes des valeurs des pixels, à droit avant streching (les valeurs Brutes), à gauche après streching

Tandis que les techniques d'amélioration radiométrique traitent chaque pixel individuellement, les techniques d'amélioration spatiale modifient les valeurs de pixel en se basant sur les valeurs des pixels environnants.

<u>Amélioration spatiale (*Spatial Enhancement*)</u>: Les images Panchromatiques ont une résolution spatiale plus élevée (détail spatial), alors que les images multispectrales offrent l'information dans plusieurs canaux spectraux (détail spectrale) mais avec une résolution relativement faible. Le traitement spatial permet une fusion de résolution pour de combiner les avantages des deux genres d'images en les regroupant dans une seule.

Image brute à résolution 30 m

Image finale à résolution spatiale 15 m

Plusieurs méthodes de traitements et de rehaussement des images satellite peuvent être utilisées, les 3 principales méthodes d'amélioration de la résolution spatiale des images satellitaires sont:

 - La composante principale : c'est la méthode la plus courante, elle devise la cellule mère (pixel) ayant la résolution 30m en quatre sous cellule ayant tous 15 m de résolution sans aucune atteinte aux valeurs numériques du pixel, c'est-à-dire sans modifier les caractéristiques spectrales du pixel.

- *la méthode Multiplicative* : cette technique permet d'aboutir à une résolution de 15 m avec un rehaussement des valeurs de pixel les plus grande (proche à 255), Ceci peut mettre en évidence des objets ayant une réflectance très importante comme les sols nu et l'urbanisme en facilitant ainsi l'examen des cartes pour vérifier la propagation des certains facteurs anthropiques au dépend des espaces vertes et des surfaces d'eau dans la plaine el Haouz.
- *Brovey transformation* : a le même principe que la méthode précédente, mais celle-ci étale les valeurs de pixel pour faire augmenter le contraste entre les valeurs de réflectance les plus petites et celles les plus grandes.

La composition colorée : l'affichage d'une image numérique à l'écran peut se faire par une seule bande au niveau de gris, ou par l'association de 3 bandes c'est ce qu'on appelle un composé coloré. Affichés ci-dessous quelques combinaisons de bandes communes dans les comparaisons RVB pour Landsat4-5 TM, Landsat8 OLI et Spot4:

Couleur Infrarouge

Landsat4-5 TM	Landsat8 OLI	Spot4
4,3,2	5,4,3	3,2,1

Couleur Naturelle

Landsat4-5 TM	Landsat8 OLI	Spot4
3,2,1	4,3,2	4,3,2

Fausse Couleur

Landsat4-5 TM	Landsat8 OLI	Spot4
7,5,3	7,6,4	1,3,2

3. Classification des images :

La classification est un processus de reconnaissance des formes. Elle consiste à effectuer la correspondance entre les éléments d'une scène de l'image matérialisés par des classes spectrales (classes regroupant des pixels dont les comptes numériques (niveaux de gris) sont semblables) définies à l'aide de paramètres statistiques (moyenne, écart-type...), et des classes connues préalablement par un utilisateur (les classes thématiques).

Cette méthode de classification va permettre de réaliser des cartes d'occupation du sol dans la plaine du Haouz à partir des données d'échantillonnages (sites d'entrainements) effectuées sur des parcelles dont on connaît leurs constituants à priori et des documents auxiliaires (carte topographique, carte géologique, visite de terrain,...etc.) la classification peut se faire de deux manières :

a) Classification non supervisée (ou non dirigée) :

Cette classification détermine automatiquement les classes. L'usager intervient toutefois en choisissant le nombre de classe. On procède à ce type de classification lorsque l'on n'a aucune connaissance du terrain ni même des comportements spectraux des objets composant l'image.

b) Classification supervisée (ou dirigée) :

Dans la classification supervisée, on identifie des échantillons assez homogènes de l'image qui sont représentatifs de différents types de surfaces (classes d'information). Ces échantillons forment un ensemble de données-tests. La sélection de ces données-tests est basée sur nos connaissances, des types de surfaces présents dans l'image. Les informations numériques pour chacune des bandes et pour chaque pixel de ces ensembles sont utilisées par logiciel pour définir les classes et ensuite reconnaître des régions aux propriétés similaires à chaque classe. Pour procède à une classification supervisée il faut :

1- Déterminée des Zone d'entrainement (ROI) (*Region of Interet*) : à l'aide des cartes Google Earth on peut facilement déterminer des zones d'entrainements et vérifier leurs compositions sur les différentes années (Fig. 28), la superposition de ces cartes sur les images satellites permet un choix rapide et plus exact des endroits (ROI) dont on connait leurs occupations du sol, soit par des visites au terrain ou par les documents bibliographiques, et qui seront utilisés par la suite pour entrainer la classification. Il faut éviter au maximum le chevauchement des signatures spectrales des objets choisis pour optimiser la classification.

2- La méthode de classification : le Maximum de vraisemblance « Maximum Likelihood » et la méthode qui est choisie pour ce travail, elle admet que la distribution des valeurs numériques pour chaque classe d'entraînement doit suivre une loi normale. Il est donc nécessaire de sélectionner un grand nombre de pixels et une population homogène pour vérifier cette normalité.

Superposition des deux cartes

ROI: Annuelles ROI: Sol nu

Fig.27 : Exemple des zones d'entrainements choisis sur l'image Spot

Une compagne d'échantillonnage a été réalisée le 28 mai 2015 pour vérifier la composition de certaines parcelles qui seront utilisées comme des zones ROI. Cela permet de faire une classification des différents types de végétations de la plaine (*Fig. 28*).

Fig. 28 : Emplacement des zones d'entrainements

Site	Type de végétation	Latitude	Longitude	Altitude (m)
1	Gazons	31,688310	-7,985472	407,504974
2	Palmiers	31,675729	-7,965637	427,1745
3	Pommes de terre	31,636542	-7,718345	553,602722
4	Oliviers	31,634049	-7,674610	578,989502
5	Blés	31,644786	-7,607431	588,714661
6	Oliviers denses	31,667353	-7,602100	578,768799
7	Luzernes	31,649011	-7,607534	583,693237
8	Oranges	31,596095	-7,981325	489,45578
9	Grenades	31,591962	-7,975014	499,151337
10	Pastèques	31,631378	-8,155422	430,770477
11	Abricots	31,631861	-8,172605	417,010529
12	Raisins denses	31,628506	-8,253683	389,08255
13	Raisins	31,585876	-8,235226	415,215179
14	Pèches et Oliviers	31,564636	-8,245996	425,472107
15	Pèches et Abricots	31,565427	-8,246099	423,561798
16	Sol nu	31,471289	-8,219396	494,152221

Tab.12 : Coordonnées (GPS) des sites d'échantillonnages

Amélioration et préparation des données images avant la classification :

Avant d'initialiser la classification, on a procédé à des améliorations spectrales parmi

lesquelles on cite :

- Analyse en composante principale (ACP) pour compresser les données redondantes des images multibandes, et utiliser que les bandes qui donnent le maximum d'information spectrale. Le choix de ces bandes ce fait à partir d'une matrice de corrélation (*Tab.13*).

	Bande 1	Bande 2	Bande 3	Bande 4	Bande 5	Bande 6	Bande 7
Bande 1	1	0.98	0.96	0.94	0.89	0.85	0.89
Bande 2	0.98	1	0.98	0.96	0.91	0.84	0.92
Bande 3	0.96	0.98	1	0.97	0.93	0.83	0.94
Bande 4	0.94	0.96	0.97	1	0.94	0.87	0.94
Bande 5	0.89	0.91	0.93	0.94	1	0.87	0.98
Bande 6	0.85	0.84	0.84	0.87	0.87	1	0.85
Bande 7	0.89	0.92	0.94	0.94	0.98	0.85	1

Tab.13 : Matrice de corrélation du l'image Landsat TM 1984

- *La transformation de Tasseled Cap* : Rotation des axes des données image pour optimiser l'étude de la végétation, cette technique a plusieurs avantages :

Elle fournit une méthode analytique de détection et de comparaison des modifications associées à la végétation. Elle fournit une méthode analytique de comparaison directe des fonctions d'occupation du sol. Elle réduit la quantité de données fournie par plusieurs canaux multispectraux et ce, à trois composantes principales : brillance (ou sol), couverture végétale et humidité. Elle réduit les influences atmosphériques et les éléments de bruit dans les images, ce qui permet une analyse plus précise.

Image TM en Composé Colorée

Image TM après amélioration « Tasseled Cap »

- *Alarm Mask*, elle permettra de voir tous les pixels dont la signature tombera dans la signature de la parcelle ROI.

Fig.29 : Image Landsat TM avant et après l'amélioration « Alarm Mask »

Evaluation de la classification :

Une fois que des signatures sont créées, elles peuvent être évaluées, effacées, renommées et fusionnées avec d'autres signatures. Nous essayerons plusieurs façons d'évaluation des signatures : *Tab.14 : Vérification de la classification supervisée par la matrice de confusion*

	Arbres	Eau	Arbres + Annuelles	Annuelles	Sol nu	Constructions et Habitats	Total
Arbres	55	0	0	0	0	0	55
Eau	0	12	0	0	0	0	12
Arbres + Annuelles	0	0	16	0	0	0	16

Annuelles	0	0	0	32	0	0	32
Sol nu	0	0	0	0	19	0	19
Constructions	0	0	0	0	0	36	36
et Habitats		3				20	20
Total	55	12	16	32	19	36	170

Si les signatures sont distinctes entre elles, alors on obtiendra un pourcentage élevé des Pixels de chaque parcelle (100%), la classification est satisfaisante. Si non on doit la refaire en choisissant d'autres ROI bien distinctes (*Tab. 14*).

La deuxième technique d'évaluation consiste à Calculer la distance statistique entre les signatures. Cette distance permet de voir si les signatures sont différentes les unes des autres.

	Anhnog	Fou	Arbres +	Annuallas	Sol	Constructions
	Arbres	Lau	Annuelles	Annuenes	nu	et Habitats
Arbres	-	110	50	212	303	134
Eau	110	-	154	312	369	195
Arbres + Annuelles	164	279	-	128	290	196
Annuelles	212	312	128	-	215	184
Sol nu	303	369	290	215	-	301
Constructions et Habitats	134	195	196	184	301	-

Tab.15 : Evaluation de la classification supervisée par la séparabilité des signatures

Les Histogrammes permettent de comparer rapidement la distribution des DN dans chaque canal pour les différentes signatures.

Fig.30 : Histogramme de distribution des valeurs numériques des pixels dans chaque bande pour les différentes signatures.

La dernière méthode d'examiner notre classification réside dans le calcule du coefficient Kappa, qui exprime la réduction proportionnelle de l'erreur obtenue par une classification, comparée à l'erreur obtenue par une classification complètement au hasard. Un Kappa proche à 1 signifie qu'environ 100% des bonnes classifications ne sont pas dues en Hasard.

On ajoute des points aléatoires dans l'image à classifiée. Après que les points soient généres, nous écrivons les valeurs de classe pour ces points, qui seront les points de référence. Ces valeurs de référence seront comparées aux valeurs de classe de l'image classifiée.

Fig.31 : Génération des points aléatoires sur l'image

$$\mathcal{K} = \frac{N\sum_{i=1}^{r} x_{ii} - \sum_{i=1}^{r} (x_{i+} \times x_{+i})}{N^2 - \sum_{i=1}^{r} (x_{i+} \times x_{+i})}$$

- K : Le coefficient Kappa
- R : Le nombre de ligne de la matrice de confusion
- X_{ii} : le nombre d'observation dans la ligne i et la colonne i
- X_{i+} et X_{+i} : les marginaux de la ligne i et la colonne i
- N : le nombre total des observations

III. LES INDICES SPECTRAUX

Comme il est mentionné dans la première partie de ce chapitre, chaque bande d'une image donne une information particulière. Dans la bande verte la végétation a une moindre réflectance et apparaît sombre. Dans le proche infrarouge la végétation est réfléchie elle donne des informations sur la structure de différentes espèces végétales. En connaissant les caractéristiques de chaque bande, il est aussi possible de les combiner en différents indices pour obtenir plus d'information. De plus, en utilisant des indices normalisés, il est possible de transférer les connaissances issues de ces indices, vers d'autres images, et éventuellement vers d'autres capteurs.

1. L'indice de végétation par différence normalisée ou indice de Tucker (NDVI) :

L'indice de végétation est un outil utilisé dans les domaines environnementaux et pour l'agriculture en particulier, car il fournit des informations sur la verdeur et l'état de la végétation. La formule de calcul du NDVI est:

NDVI = (*proche IR - rouge*) / (*proche IR + rouge*)

La normalisation par la somme des deux bandes permet de réduire les effets d'éclairement. Le NDVI conserve une valeur constante quelque soit l'éclairement global, contrairement à la simple différence entre la bande PIR et Rouge (indice de végétation simple), qui est très sensible aux variations d'éclairement. Cet indice normalisé est sensible à la vigueur et à la quantité de la végétation.

Les valeurs du NDVI sont comprises entre -1 et +1, les valeurs négatives correspondant aux surfaces autres que les couverts végétaux, comme la neige, l'eau ou les nuages pour lesquelles la réflectance dans le rouge est supérieure à celle du proche infrarouge. Pour les sols nus, les réflectances étant à peu près du même ordre de grandeur dans le rouge et le proche infrarouge, le NDVI présente des valeurs proches de 0.

Les formations végétales quant à elles, ont des valeurs de NDVI positives, généralement comprises entre 0,1 et 0,7. Les valeurs les plus élevées correspondant aux couverts les plus denses.

Fig.32 : Variation de NDVI en fonction de la santé de la végétation (Illustration by Robert Simmon, NASA GSFC).

Une végétation en bonne santé absorbe la plupart de la lumière visible qui l'intercepte et réfléchi une partie importante de la lumière PIR. Une végétation en mauvaise santé ou clairsemée réfléchi plus de lumière visible et moins de PIR (*Fig. 32*).

La puissance de cet indice réside dans sa capacité de distinguer même entre les espèces végétales, car il est directement lié à l'activité photosynthétique des plantes et donc à la capacité d'absorbation énergétique du couvert végétal. Il agit comme indicateur de la biomasse chlorophyllienne des plantes.

Fig.33 : Influence de l'activité chlorophyllienne sur la valeur de NDVI (www.dronesimaging.com)

Une valeur de NDVI comprise entre 0.5 et 0.8 peut indiquer l'existence d'un couvert végétal dense.

Dans notre travail, Le suivi des cartes de NDVI dans la plaine du Haouz pour le mois juin depuis 1984 jusqu'à 2014 va nous permettre de cartographier les espaces verts et visualiser la variation du couvert végétal dans ces dernières décennies.

2. L'indice de l'eau par différence normalisée NDWI (Gao, 1996) :

Suivant le même principe que le NDVI, l'indice de teneur en eau par différence normalisée (Normalised Difference Water Index, NDWI) utilise la bande proche infrarouge et une bande de l'infrarouge à courtes longueurs d'onde (short-wave infrared, SWIR)(Gao, 1996). Au lieu de la bande rouge, où la réflectance est affectée par la chlorophylle, le NDWI utilise une bande de l'infrarouge à courtes longueurs d'onde (entre 1500 et 1750 nm), où l'eau possède un pic d'absorption. La bande du proche infrarouge (near-infrared, NIR) est la même que celle du NDVI car l'eau n'absorbe pas dans cette région du spectre électromagnétique. L'indice NDWI se calcule selon l'équation suivante:

NDWI = (PIR - SWIR) / (PIR + SWIR)

Cet indice permet de vérifier l'efficacité des systèmes d'irrigations car les plantes correctement irriguées ayant une teneur en eau forte vont refléter une valeur de NDWI proche de 1. Le NDWI peut être calculé d'une autre manière de telle façon à mettre l'accent cette fois sur les surfaces d'eau et non pas de l'humidité des plantes et des sols, cela permet d'estimer l'évolution des superficies des eaux en comparant une série des images satellitaires à différente période du temps (*Fig. 34*). Son équation est la suivante :

NDWI = (bande Verte – Proche infrarouge) / (bande Verte + Proche infrarouge)

Fig.34 : Les deux types d'indice de l'eau par différence normalisée (NDWI)

3. Indice du sol par différence normalisée NDSI (Takeuchi and Yasuoka, 2004):

Les valeurs de NDSI varient selon la signature spectrale de la bande infrarouge et le proche infrarouge moyen. Les couleurs claires (valeurs positives) symbolisent les sols et les couleurs sombres (valeurs négatives) symbolisent autres éléments du paysage (*Fig. 36*). Il est utile dans la cartographie des entités pédologiques, mais aussi certains éléments de constructions environnantes. La formule pour calculer cet indice est:

NDSI = (SWIR - PIR) / (SWIR + PIR)

Fig.35 : Image Google Earth

Fig.36 : Indice de sol par différence normalisée (NDSI)

Fig.37 : Variété spectrale des éléments de la terre en relation avec les indices normalisées NDVI, NDWI et NDSI (Takeuchi and Yasuoka, 2004)

Tab.16 : comparaison des l'indices calculés pour onze types d'objets de couverture terrestre

	Conifère	Dico tylédon	Herbe	Béton	Sable	Limon	Argile	A. sèche	Asphal te	Eau	Neige
NDVI	0.83	0.83	0.81	0.08	023	0.22	0.14	0.24	0.15	0.06	0.05
NDSI	-0.47	-0.45	-0.35	-0.11	0.06	0.01	-0.02	0.11	0.02	-0.26	-0.76
NDWI	-0.60	-0.64	-0.65	0.03	-0.29	-0.23	-0.12	-0.34	-0.14	0.20	0.69

(Takeuchi and Yasuoka, 2004)

- NDVI a des valeurs beaucoup plus élevées positif (0,81 ~ 0,83) dans le groupe de la végétation (CN, DC, HB).
- NDSI a de plus grandes valeurs (-0,11 ~ 0,11) dans le groupe des sols (BT, SB, LM, AR, AS, ASP).
- **WI** A des valeurs positives $(0,10 \sim 0,69)$ que dans le groupe d'eau (EA, NE).

4. DETECTION DES CHANGEMENTS (CHANGE DETECTION) :

La détection des changements dans les systèmes d'informations géographiques (SIG) est une méthode qui permet de comprendre comment une zone donnée a changé entre deux ou plusieurs périodes de temps (*Singh 1989*). La détection de changement est utile pour visualiser le changement de la couverture forestière, les surfaces d'eau, et l'utilisation des terres. Elle consiste à comparer les images satellites d'une zone prise à de périodes différentes.

L'utilisation des données satellitaires pour la détection du changement se nase sur le fait que tous changements dans les objets d'intérêts entraîneront des changements dans les valeurs de réflectance. Les changements peuvent être causés par des facteurs tels que les différences dans les conditions atmosphériques, l'éclairage et les angles de vision et l'humidité du sol *(Deer, 1995).* Vue que la détection de changement numérique est affectée par des contraintes spatiales, spectrales, thématiques et temporelles, et parce que de nombreuses techniques de détection des changements sont possibles à utiliser, la sélection d'une méthode appropriée ou un algorithme pour un projet de recherche donné est important.

Dans ce travail, nous avons utilisés deux techniques pour estimer le changement du couvert végétal et les surfaces d'eau dans la zone d'étude. La première consiste à soustraire la première image de la date postérieure à deuxième, pixel par pixel (*Fig. 38*), puis déterminer des classes de comparaison selon le degré de changement entre les deux images.

Fig.38 : Illustration de l'opération de soustraction algébrique de 2 images satellites avec des exemples de valeurs de pixels.

La deuxième technique consiste à calculer un ratio entre deux images de date différente, Le résultat du rapport est une image des changements survenus dans la zone étudiée. Les valeurs de l'histogramme de cette image sont regroupées dans trois classes suivant les types de changement : les valeurs inférieures à 0 indique une régression de radiométrie.les valeurs

égales à 0 indique qu'il n'y a pas de changement alors que les valeurs supérieures à 0 indiquent une progression de radiométrie.

L'analyse de ces résultats a permis de faire un lien entre l'état de la végétation et des surfaces d'eau et le type de changement détecté. La régression de la radiométrie est liée à une dégradation de l'état d'objets détectés. L'augmentation de la radiométrie est un signe de variation progressive. Par contre la radiométrie inchangée correspond aux zones relativement stables, il s'agit surtout des sols nus et les bâtis.

La figure suivante (*Fig. 39*) montre en gros le principe de la technique de détection du changement appliquée dans notre étude.

Fig.39 : Organigramme méthodologique des différentes étapes de la détection du changement de la couverture terrestre

Chapitre 3 : Résultats et Discussions

Introduction

Les images satellites regorgent d'informations qui sont parfois difficiles à interpréter et à synthétiser; elles nécessitent des traitements supplémentaires qui permettent d'extraire les informations pertinentes pour l'utilisateur. La différenciation des paysages reposant sur la dissimilitude de leur signature spectrale, il convient de contrôler la distribution des données pour éventuellement la rectifier. De même qu'il convient de rapporter à un même ordre de grandeur les dynamiques respectives de différents fichiers-images avant de les comparer. Ces transformations facultatives ne modifient pas l'information mais elles sont de nature à améliorer les visualisations et la pertinence des traitements ultérieurs.

Après avoir effectué tout les traitements nécessaires, on passe à l'étape de préparation des indices spectraux, l'initiation à la classification des images et à la détection des changements dans le temps et l'espace. Comme on a vu dans le chapitre précédent Une classification a pour but d'associer les pixels d'une image à des unités de paysage. Certaines méthodes classificatoires nécessitent la participation d'un opérateur, d'autres sont entièrement automatiques. Une classification assistée se pratique en étudiant successivement les histogrammes des valeurs radiométriques. Chaque fois que la distribution présente plusieurs populations espacées (histogramme bi-modal, tri-modal, etc.), l'opérateur délimite des classes caractérisées par des réponses spectrales différentes. Pour chacune des populations associées à ces classes, il étudie pareillement les réponses radiométriques dans les autres bandes et détermine toutes les subdivisions possibles.

Dans ce chapitre, on exprime les résultats obtenus du traitement des images satellites à haute résolution spatiale (Landsat et Spot) et à basse résolution (Modis) pour pouvoir les comparer, et pour tracter le maximum d'informations.

Nous suivrons la variabilité spatio-temporelle de la couverture terrestre dans la plaine du Haouz, et à l'aide de la nouvelle technique de la détection du changement on peut estimer le taux des surfaces ayant subissent une dégradation du couvert végétal et des surfaces d'eau comme on peut déterminer les endroits qui sont de plus en plus sollicités par les activités agricoles.

I. Résultats de traitement des images satellites à haute résolution spatiale (Période 1984-2014) :

1. Variabilité spatio-temporelle des surfaces d'eau dans la plaine Haouz :

La signature spectrale des surfaces d'eau, comme tous les objets de la surface de la terre, varie légèrement dans le temps, elle dépend de plusieurs facteurs : la distance Terre-soleil, la superficie, la composition chimique, la date de prise de l'image, le type de capteur et les effets atmosphériques (*Fig. 40*).

Le traitement des images tend à adoucir l'impact de ces facteurs sur la réflectance pour homogénéiser l'empreinte spécifique de chaque objet.

Fig.40 : La signature spectrale de l'eau dans les différentes images Landsat TM (1984-2010 et OLI 2014)

L'indice de l'eau par différence normalisé NDWI calculé à partir des images Landsat (Résolution spatiale 30 m) calibrées et corrigées des effets atmosphériques prend ses valeurs entre 1 et -1, La valeur moyenne de l'eau dans la plaine est de l'ordre de 0,15 déterminée à travers les sites d'entrainements définie au préalable (Dans la zone Agdal) (*Fig. 41*). A partir

de cette valeur on a pu cartographier les surfaces d'eau afin de suivre leurs dynamiques dans le temps et dans l'espace.

Fig.41 : variation de la signature spectrale de l'eau dans les images Landsat après traitement

L'analyse des cartes temporelles de NDWI montre une régression globale des surfaces d'eau dans la plaine d'environ 25% dans ces dernières 30 années (*Fig.42*). L'eau a occupé une superficie de 51,11 Km² en 1984 puis 74,571 Km² après 2 ans, avant qu'elle atteigne sa surface maximale 80,81 Km² pendant l'année 2009. Dans l'année précédente l'eau n'a occupé que 13,33 Km², le tableau ci-dessous résume la variation de l'indice de l'eau dans la plaine du Haouz depuis 1984 jusqu'a2014.

	Superficie en Km ²	Superficie en %
NDWI en 1984	51,111	0,96
NDWI en 1986	74,571	1,4
NDWI en 2002	21,875	0,41
NDWI en 2009	80,814	1,52
NDWI en 2010	25,127	0,47
NDWI en 2014	13,331	0,25

Tab.17 : Variation de la superficie de l'eau dans la plaine d'Haouz (1984-2014)

Fig.42 : Dynamique des surfaces de l'eau dans la plaine Elhaouz depuis 1984 jusqu'à 2014

- Interprétation :

La dynamique des surfaces d'eau peut expliquer par plusieurs facteurs, la forte tension sur les ressources en eau (changements climatiques, accroissement de la population, désertification...) augmente dans le temps, l'indice de l'eau par différence normalisé montre une forte corrélation avec les moyennes des hauteurs mensuelles de pluie (*Fig. 43*) chose qui apparait évidente puisque ce facteur reste le plus exigeant dans l'interprétation de ces changements.

La surface d'eau maximale a été enregistrée pendant l'année 2009, cela s'explique par le taux de précipitation important qu'a connu l'amont et la plaine Haouz dans cette année.

Fig.43 : Corrélation entre l'indice de l'eau et les moyennes des hauteurs mensuelles de pluie

2. Variabilité spatio-temporelle de la végétation et du sol dans la plaine du Haouz :

La végétation saine absorbe une grande partie de la lumière visible dans le rouge par l'intermédiaire des pigments chlorophylliens et réfléchit fortement dans le proche Infrarouge (PIR) à cause de la structure interne des feuilles. Le fort contraste entre la réflectance dans le rouge et le proche infrarouge est ainsi exploité pour construire NDVI. Cet indice peut fournir des informations quantitatives sur les caractéristiques de la végétation : taux de recouvrement, surface foliaire (surface de feuille par surface de sol exprimé en m²/m²) et le type de végétation et sa santé. Le NDVI est aussi lié à d'autres paramètres comme le pourcentage du sol occupé, l'activité photosynthétique, la quantité de biomasse et trouve une large gamme d'application pour le suivi de la végétation.

L'indice du sol NDSI est en corrélation étroite avec NDVI (*Fig. 44*), les sols réfléchissent mieux dans l'infrarouge moyen (MIR) et contrairement à la végétation il absorbe une grande partie de proche infrarouge (PIR). Ces deux entités sont toujours liées les unes aux autres, ce qui explique la variation synchronisée entre ces indices qui montrent une évolution dans le même sens.

Sous un même climat, le taux d'évolution des sols est liés à l'état de la végétation, cette dernière, morte ou vivante, a un impact positif sur l'entité pédologique par:

- 1- la protection du sol contre les gouttes de pluie ;
- 2- la fixation du sol et l'amélioration de sa porosité par le système racinaire ;

3- la diminution de la vitesse de ruissellement et l'augmentation de la sédimentation par les racines et la tige qui constituent une barrière physique face aux eaux de ruissellement ;

4- La contribution à la stabilité structurale du sol par l'apport de matière organique.

L'augmentation de la superficie du couvet végétal impliquera donc une évolution du sol. Dans la plaine Haouz, la surface occupé par ce dernier a été de l'ordre de 131,89 Km² en 1984, après 30 ans son extension à dépasser les 767 Km² c'est-à-dire cinq fois plus, ainsi que la végétation a vu une augmentation de 13,5 % depuis 1984 (*Tab. 18*).

	Superficie en Km ²	Superficie en %	Taux de changement
NDSI en 1984	131,8968	2,4	
NDSI en 1986	227,8953	4,2	1,8 % (96 Km ²)
NDSI en 2002	405,2565	7,6	3,4 % (178,25 Km ²)
NDSI en 2009	437,3397	8,2	$0,6 \% (32,08 \text{ Km}^2)$
NDSI en 2010	660,1761	10,4	$2,2 \% (222,84 \text{ Km}^2)$
NDSI en 2014	767,1582	14,4	4 % (106,98 Km ²)

Tab. 18 : Evolution spatio-temporelle de NDSI dans la plaine Elhaouz (1984-2014)

Le changement qu'a subit la végétation reflète l'importance de l'exploitation des terres en raison de la croissance démographique pour couvrir les besoins de la population qui dépasse les 3 millions d'habitants dont 60% dans le milieu rural. Les facteurs climatiques surtout la pluviométrie jouent aussi un rôle dans cette dynamique végétale. Le tableau suivant montre le degré d'évolution du couvert végétal :

	Superficie en Km ²	Superficie en %	Taux de changement
NDVI en 1984	506,0106	9,5	
NDVI en 1986	676,0395	12,7	3,2 % (170 Km ²)
NDVI en 2002	1008,0522	18,9	$6,2 \% (332 \ \text{Km}^2)$
NDVI en 2009	1154,6136	21,7	2,8 % (146,5 Km ²)
NDVI en 2010	1177,2621	22,1	$0,4 \% (22,6 \ \mathrm{Km}^2)$
NDVI en 2014	1214,8614	22,8	0,7 % (37,6 Km ²)

Tab.19 : Evolution spatio-temporelle de NDVI dans la plaine Elhaouz (1984-2014)

Malgré que le taux de précipitation a connu une légère diminution depuis 2009 jusqu'à 2014 (*Fig. 45*), La végétation a connu une expansion importante pendant les trente dernières années (*Fig. 46*). Ceci grâce au développement des systèmes d'irrigations dans la plaine et l'augmentation des investissements dans ce domaine qui visent l'amélioration de la production de plusieurs espèces végétales.

Fig.46 : Variation d'indice de végétation dans la plaine Elhaouz depuis 1984 jusqu'à 2014

NDVI est l'indice le plus utilisé pour suivre l'évolution de la végétation dans un endroit donné, mais ce dernier doit être exploité avec précaution parce qu'il peut conduire à sousestimer la superficie du couvert végétal dans les saisons les plus sèches et le surestimer dans les saisons pluvieuses à cause de sa sensibilité à la réflectance du sol sous-jacent et à la densité de la végétation. Ce qui impose une vérification de cet indice en s'appuyant sur des donnés climatiques, des compagnes de terrain et en le comparant avec d'autres images satellitaires à hautes résolution spatiale.

- Données de terrain :

A partir des données de terrain collectées, depuis l'année 2002 jusqu'à 2014 on remarque une augmentation de la surface totale des arbres et des annuelles implantés dans la plaine qui est d'environ 4000 hectares. Pour l'olivier, la surface est passée de 14685 hectares en 2001/2002 à 18054 hectares en 2013/2014. Les agrumes et l'abricotier occupant respectivement 480 et 422 hectares en 2002 passent respectivement à 1735 et 483 hectares en 2014. Ces données couvrent aussi d'autres espèces comme la vigne, l'amandier et le pommier (*Fig. 47*).

Fig.47 : Evolution de la surface totale des espèces végétales implantées dans la plaine Elhaouz depuis 2002 jusqu'à 2014 (données de l'ORMVAH)

Comme le cas de NDWI, et à partir des images brutes de NDSI et NDVI, on peut définir des seuils de densité de végétation et des sols et élaborer des cartes de recouvrement avec une résolution de 30m, qui constitueront une première étape de l'élaboration de la carte d'occupation du sol.

Pour comprendre la distribution de la végétation et les surfaces d'eau dans la plaine, nous avons testé deux méthodes d'interpolation géostatistiques: le krigeage (*Krige, 1951*) et la méthode IDW (Inverse Distance Weighted) (*Shepard 1968*), cela dans le but d'obtenir des champs de pluie régulièrement distribués dans l'espace et le temps.

Nous avons opté pour la méthode IDW, c'est une méthode facile à mettre en œuvre et donne des résultats satisfaisants quand le nombre de stations de mesures de pluviométrie est élevé (64 stations en totale, 18 de ORMVAH et 46 de ABHT).

La méthode IDW détermine les valeurs en chaque nœud de la grille par une combinaison linéaire des valeurs des points d'observations, sous l'hypothèse que l'influence d'un point d'observation diminue linéairement avec la distance qui le sépare du nœud considéré (Fig. 52). Les facteurs de pondération (wi) sont compris entre 0 et 1 et leur somme est égale à 1. Quand l'observation coïncide avec le nœud, le facteur de pondération est 1, et le poids des autres est nul. Une conséquence est la génération de bulle (en anglais bull's eye) autour de la position observée si l'observation diffère fortement des observations situées à proximité.

$$P(x,y) = \sum_{i=1}^{n} Wi Pi$$

Avec

i.

Wi : facteur de pondération pour la station i.

n : nombre de stations de pluviométrie les plus proches du point à interpoler.

(x, y) : coordonnées du nœud (point de grille) considéré.

Fig.48 : Principe de pondération dans la méthode IDW

Fig.49 : Spatialisation des moyennes des précipitations annuelles (en mm) par la méthode IDW

Les versants nord du Haut Atlas reçoivent la plus grande partie de précipitations annuelles drainés par les rivières pour alimenter l'oued Tensift, ce qui favorisent l'installation du couvert végétal (surtout les annuelles) au piedmont de la chaîne atlasique et au sud de la plaine (*Fig.49*). Au Haouz centrale entre la ville Marrakech et Sidi Zouine les moyennes de précipitations sont relativement faible et elles ne dépassent pas 176 mm, malgré ça on remarque sur les cartes de NDVI et NDWI une évolution de la végétation et des surfaces d'eau dans cette partie de la plaine pendant la période 1984-2014, cela est expliquer par le développement des systèmes d'irrigations qui sont concentrés au centre de la plaine pour couvrir le besoin en eau des agriculteurs, cette zone a vu aussi la mise en place de nouvelles cultures pour améliorer le rendement et la production.

3. Création de la carte d'occupation du sol de la plaine Elhaouz à partir des images à haute et à moyenne résolution spatiale :

Le principe d'une classification est de fournir au logiciel qui effectue la classification, des échantillons de pixels représentant une région de référence homogènes et dont on connaît la nature, appelés zone d'apprentissage ou zone d'entrainement.

Pour élaborer la classification, on a d'abord digitalisé des parcelles d'entrainement sur les images pour chaque classe déterminée à priori ceci à base du NDVI, ce qui nous a permet de réaliser une carte des différentes plantations qui existent dans la plaine.

Rappelons que chaque espèce végétale prend une valeur de NDVI qui reflète sa signature spectrale, cette dernière se diffère d'un capteur à l'autre, pour cette raison on a effectué 3 classifications de la végétation selon les images dont on dispose (SPOT, Landsat TM et Landsat OLI).

Les parcelles d'entrainement constituent des portions d'espace représentatives d'une classe d'objet géographique. Le comportement numérique de ces parcelles d'entrainement est supposé représentatif du comportement numérique de l'ensemble de la classe sur l'image *(Fig.50)*.

Fig.50 : Les sites ROI utilisés pour entrainer la classification

Pour l'image Spot4 ayant une résolution spatiale de 20 m, les valeurs de NDVI des espèces choisis sont comprises entre 0,16 et 0,5 (Fig. 55). On a pu déterminer 14 classes puis on a lancé la classification après avoir vérifier l'emplacement de chaque zone d'entrainement.

Fig.51 : La valeur de NDVI appropriés à chaque type de végétation pour l'image Spot4.

La carte obtenue (*Fig.53*) montre la répartition spatiale des cultures dans la plaine du Haouz, on remarque une prédominance de l'olivier qui occupe 24% de la surface des terres arables avec une superficie de 437 Km², suivit par le palmier 13%, la pomme de terre vient dans la troisième classe et occupe 108 Km² de la surface totale c'est-à-dire environ de 6%.

Le blé, la luzerne, le pêche et l'abricotier ont resté un peu sous le seuil d'anticipation est ne dépassent pas 66 km² (*Fig.52*).

Fig.52 : La part de chaque culture dans la surface totale arable dans la plaine

Fig.53 : La carte des différentes d'agricultures qui subsistent dans la plaine Elhaouz (élaborée à partir de NDVI d'image satellite Spot4, RS = 20m)

Suivant la même procédure, on a effectué une classification de la végétation à partir de NDVI calculé de l'image Landsat TM, on remarque que les espèces végétales prennent différentes valeurs de NDVI que celles obtenues précédemment et on a ressorti avec nouvelle carte.

La différence enregistrée entre les deux cartes est expliquée par la l'écart de précision radiométrique qui existe entre les deux capteurs et la résolution spatiale qui a changée de 20 m à 30 m pour le capteur Landsat qu'on a transformé à 15 m après amélioration spatiale.

Le risque de faire des erreurs pour ce genre de classification n'est pas négligeable sachant que sur le terrain on trouve souvent un chevauchement entre les cultures ou des annuelles et des arbres dispersés ce qui donne une valeur de NDVI un peu différente, parfois les valeurs sont très rapprochés entre les cultures ce qui nécessite une validation de l'image obtenue. C'est la raison qui nous a amené à réaliser des classifications à partir de différentes capteurs pour pouvoir les comparés par la suite.

Fig.54 : La valeur de NDVI appropriée à chaque type de végétation pour l'image Landsat TM

Fig.55 : la carte des différents types de culture de la plaine du Haouz (élaborée à partir de NDVI d'image satellite Landsat TM, RS = 15m)

Le couvert végétal se caractérise par la prédominance de l'olivier et le palmier ayant respectivement une superficie de 533 Km^2 et 269 Km^2 , ils constituent avec la pomme de terre presque 50% de la culture. On remarque aussi une évolution de la surface occupée par la pêche qui couvre en association avec luzerne 120 Km^2 (*Fig.56*).

Fig.56 : La part de chaque culture dans la surface totale de la plaine Elhaouz.

Pour le nouveau capteur du Landsat OLI, on remarque que les résultats se ressemblent avec celles de Landsat TM, puisqu'ils ont presque les mêmes caractéristiques et une résolution spatiale identique. La seule différence réside dans la date de l'acquisition des deux images.

Fig.57 : La valeur de NDVI appropriée à chaque type de végétation pour l'image Landsat OLI

Fig.58 : La carte des différentes d'agricultures qui subsistent dans la plaine Elhaouz (élaborée à partir de NDVI d'image satellite Landsat OLI, RS = 15m)

Fig.59 : La part de chaque culture dans la surface totale de la plaine Elhaouz.

A l'issus de ces résultats et après analyse de toute ces cartes, la dernière étape consiste à réaliser une carte d'occupation du sol de la plaine du Haouz. Les résultats des différents indices traités montrent que la zone d'étude a connu plusieurs changements au terme de la couverture terrestre ces dernières 30 années. La création de deux cartes qui reflètent chacune l'état de l'occupation du sol en 1984 et en 2014 permet de quantifier ces changements et de déterminer le sens d'évolution de la couverture terrestre.

La classification finale est le résultat d'une démarche itérative. A l'issue de cette démarche une classification a été construite, de façon à obtenir des classes thématiques les plus pures possibles. On a retenue pour les deux cartes sept grandes classes (*Fig. 60*) :

- les annuelles denses : la densité de la culture annuelle (des plantes dont le cycle de vie de la germination jusqu'à la production des grains ne dure qu'une année) donne une signature spectrale spécifique à cette classe ;
- les annuelles : les zones où ces plantes ne sont pas cultivées en grande quantité ou elles sont dispersées reflètent moins la lumière ce qui leur donnent une valeur inférieur à celle des annuelles denses, ceci permet de distinguer entre ces deux classes ;
- les arbres : les caractéristiques spectrales des arbres (réflectance) facilitent leurs détection par image satellitaire, mais il faut vérifier les données recueillit sur le terrain pour pouvoir les séparés avec les autres plantes ;
- les arbres + les annuelles : l'association des ces deux genres de plantes ou leurs existence dans un espace restreint change leur comportement vis-à-vis de la lumière et permet de les classés à part ;
- le sol nu.
- construction et habitat.
- l'eau.

Fig.60 : Histogramme de dispersion des classes thématiques dans la bande 1

Une que fois les signatures sont créées, elles peuvent être évaluées, effacées, renommées et fusionnées avec d'autres signatures. La table de séparabilité des parcelles d'entraînement (*Fig. 61 et 62*) nous a permis d'évaluer leur qualité : sont-elles judicieusement définies ? Certaines ne méritent-elles pas d'être regroupées ou, au contraire, scindées ? A partir du calcul de la distance statistique entre les signatures et le pourcentage d'association entre les classes, on a pu comparer les signatures et vérifier si elles sont différentes et bien séparées les unes des autres.

Fig.61 : Tableaux de la distance statistique et de pourcentage d'association entre les classes pour la classification d'image TM 1984

Fig.62 : Tableaux de la distance statistique et de degré de séparation entre les classes pour la classification d'image OLI 2014

L'indice Kappa, calculé a partir de la matrice de confusion, qui permet aussi de vérifier la classification est de 0.9 pour les deux cartes, ce qui implique que 90% de notre classification n'est pas fait au hasard.

Fig.63 : Variation de la superficie (en Km²) d'occupation du sol dans la plaine Elhaouz depuis 1984 jusqu'à 2014

L'analyse des deux cartes d'occupation du sol obtenues prouve que la plaine a connu une richesse au niveau de la flore avec une régression remarquable de la superficie des sols nus (d'environ 40%) qui sont de plus en plus exploités par les activités humaines. On note aussi l'expansion des zones urbaines et des constructions, pendant ces dernières années (*Fig.63*), qui suit le développement démographique et industriel de la région.

On remarque que le Haouz central est devenu un site d'agriculture par excellence avec la mise en place de nouvelle culture surtout à l'est de l'Oudaya et à l'environ de Sidi Zouine, la surface de l'olivier dans ce secteur, à titre d'exemple, a passée de 14802 ha pendant les années quatre-vingt-dix à 18502 ha en 2014 selon les données de l'ORMVAH, même chose pour le Haouz oriental qui a été relativement sous exploiter mais il a connu de son tour une évolution surtout au niveau des arbres et des arbustes.

Fig.64 : Extension de la ville Marrakech depuis 1984 jusqu'à 2014

La ville Marrakech s'élargit très vite surtout vers l'ouest et vers le sud avec l'augmentation de la densité de population depuis les années 1980 (*Fig.64*).

II. Résultats de traitement des images satellites à basse résolution spatiale (période 2009 à 2014) :

Les images de basse résolution utilisées dans ce travail sont des images de type MODIS. Ce capteur produit sur des intervalles de 16 jours et à plusieurs résolutions spatiales (de 250 m à 1Km) des cartes d'indice de végétation, avec des comparaisons spatiales et temporelles cohérentes. Les indices de végétation sont dérivés de réflectance atmosphérique corrigée dans les gammes d'onde rouge et proche infrarouge. Ce capteur permet l'acquisition d'images du mois juin des années 2009 jusqu'à 2014, ce qui nous offre l'occasion de suivre l'évolution de la végétation pendant cette période, qui la même choisi sur les autres images TM et Spot.

Fig.65 : Variation de NDVI du capteur Modis au cours de l'année pendant la période 2009-2014 (Source : USDA/NASA/UMD GLAM projet)

Pour Modis la valeur du NDVI du mois juin varie légèrement, mais elle reste dans la gamme de 0,05 à 0,5 (*Fig.66*), comme le cas des deux capteurs Landsat et Spot, à partir de cet intervalle on a pu cartographier la végétation dans la plaine à la base de ces images Modis ayant une résolution spatiale de 250m.

Fig.66 : L'intervalle de fluctuation de la valeur de NDVI des images Modis au mois de juin dans la plaine du Haouz depuis 2009 à 2014 (Source : USDA/NASA/UMD GLAM projet)

Les images Landsat traités ont montré que le Haouz à évoluer de 12,2% au terme de la végétation depuis 1984 jusqu'à 2009, et de 1,1% seulement de 2009 à 2014. Les images Modis à basse résolution spatiale confirme cette évolution, toute en précisant que le couvert végétal s'est bien développé depuis 2009 jusqu'à atteindre son maximum en 2011 puis il a chuté d'environ 7,1 % en 2012 et 4,1 % en 2014 (*Fig.67*). Ceci justifie le taux d'évolution relativement faible dans les 5 années précédentes.

Fig.67 : Evolution de la végétation dans la plaine du Haouz depuis 2009 jusqu'à 2014

Interprétation :

La régression de la végétation en 2012 concerne les annuelles en premier temps, la surface de ces plantes a reculée de quelques Km^2 , une régression qui peut être justifié par les changements climatiques récents qu'a connue la plaine depuis cette année, surtout au niveau de la pluviométrie. L'année 2009 a été exceptionnelle par le taux de précipitation enregistré (359 mm comme hauteur mensuelle moyenne) ce qui a conduit à l'épanouissement des plantes surtout les annuelles, par contre en 2014 les précipitations n'ont pas dépassées 245 mm (*Fig.68 et 69*).

Fig.68 : Hauteurs de Pluie Mensuelle en mm dans la plaine Elhaouz (2009-2014)

Fig.69 : Spatialisation des pluies (en mm) dans la plaine Elhaouz de 2009 à 2014

La production végétale est en permutation continue, certaines cultures commencent à avoir plus d'intérêt commercial que d'autres, les pommiers, abricotiers et vignes par exemple sont de plus en plus desserrés au dépend de l'olivier, amandiers et des agrumes.

Malgré l'application du plan agricole régionale Marrakech-Tensift-Elhaouz qui vise l'amélioration de la production, de la qualité et des conditions de commercialisation de la production, l'année 2014 est marquée par la diminution de la superficie et du rendement de toutes les espèces végétales à l'exception des amandiers.

Filières	Superficie en Ha ou en effectifs		Rendements	
	2009	Horizon 2020	2009	Horizon 2020
Olivier	89.700	110.000 (+24%)	2 T/Ha	5 T/Ha
Céréale	70.000	40.000 (-40%)	26 Qx/Ha	50 Qx/Ha
Abricotier	5.500	5.500	10 T/Ha	20 T/Ha
Agrumes	5.100	8.000 (+56%)	17 T/Ha	30 T/Ha

Tab.20 : Perspectives du plan agricole régional Marrakech Tensift Elhaouz (Données d'ORMVAH)

Fig.70 : Evolution de la production (Kg) (en rouge) et la superficie (Ha) (en bleu) des cultures dans la zone d'action d'ORMVAH depuis 2009 à 2014 (Source : ORMVAH)

III. Application de la technique « Change detection » pour l'estimation du changement de la couverture terrestre du Haouz entre 2009 et 2014 :

« Change detection » est une technique qui est utilisée pour détecter les variations des surfaces du sol à partir des images multitemporelles. Nous avons testé cette technique pour les deux types de NDVI qu'on déjà calculé à partir des images Landsat (haute résolution spatiale) et Modis à basse résolution.

NDVI₂₀₁₄ (Landsat) – NDVI₂₀₀₉ (Landsat) = Change detection₂₀₁₄₋₂₀₀₉ (Landsat) NDVI₂₀₁₄ (Modis) – NDVI₂₀₀₉ (Modis) = Change detection₂₀₁₄₋₂₀₀₉ (Modis)

Sur les images résultantes on distingue généralement trois classes :

- Les pixels ayant une valeur supérieure à 0 reflètent les zones qui ont connues un enrichissement de la végétation à partir de 2009.
- Les pixels dont la valeur de pixel égale à 0 sont les zones qui n'ont connues aucun changement dans la période 2009-2014.
- Les pixels avec une valeur négative (inférieur à 0) correspondent aux endroits on le couvert végétal a régressé.

Fig.71 : Détection du changement du couvert végétal dans la plaine Elhaouz depuis 2009 à 2014 (issus de NDVI des images Landsat)

L'élaboration des cartes des zones qui ont subit un taux de changement supérieur à 10% met l'accent sur les endroits qui ont marqué le plus de variation de végétation au cours des années, ce sont les surfaces les plus exposés aux aléas climatiques ou au ravage des constructions sur les espaces verts (régression de plus de 10%) ou au sens inverse qui ont connue un boisement ou une exploitation agricole remarquable (augmentation plus de 10%).

Fig.72 : Les zones les plus exposées aux changements d'indice de végétation dans la plaine du Haouz (1984-2002)

Au cours des deux premières années (entre 1984 et 1986), il n'y a pas un changement remarquable au niveau de l'extension de la végétation dans la plaine (*Fig. 72*), on note environ de 24 Km² des zones qui ont connues un taux de variation supérieur à 10%. Cependant la période entre 1986 et 2002 a connu une augmentation de 198 Km² surtout dans le Haouz centrale où les populations ont commencé à donner plus d'intérêt à l'agriculture avec l'apparition des techniques de culture plus vigoureuses.
Depuis 2002 jusqu'à 2014 la plaine continue à avoir des extensions de végétation marquées par une variation intense de NDVI (*Fig.73*). Il faut noter qu'au niveau du Haouz oriental l'apparition des endroits qui ont un taux de changement de plus de 10% ne signifie pas forcement l'arrivé d'un couvert végétal extensif mais juste l'écart des valeurs numériques de NDVI entre ces années qui a fait apparaître ces zones à forte contraste.

Fig.73 : Les zones les plus exposées aux changements d'indice de végétation dans la plaine Elhaouz (2002-2014)

Fig.74 : Evolution des surfaces ayant subit un taux de changement supérieur à 10%

Dans l'interprétation des images à haute résolution spatiale (TM) la végétation de la plaine s'est développée dans quelques endroits environ 218 Km² depuis 2009 (*Fig.71*), mais on note aussi une surface d'ordre de 182 Km² qui a subit une dégradation de la végétation.

L'interprétation de l'image Modis (*Fig.75*), montre que certaines zones vertes ont diminués d'une surface globale de 318 Km² est l'extension de la végétation dans d'autres endroits a atteint 310 Km² c'est-à-dire avec un déficit de quelque hectares. Ce contraste des résultats entre les images Modis et TM pourrait être lié principalement à la différence de la résolution spatiale entre les deux capteurs.

Au niveau de la figure 75, les zones en jaune sont les surfaces qui n'ont connue aucune extension ou régression, elles correspondent généralement aux sols nus non fertiles et aux zones urbaines.

Fig.75 : Détection du changement du couvert végétal dans la plaine Elhaouz depuis 2009 à 2014 (issus de NDVI des images Modis)

Conclusions générales et discussion

La télédétection est un outil privilégié. Elle permet l'acquisition de données régulièrement distribuées dans l'espace et le temps pour caractériser les surfaces continentales en termes d'occupation du sol. Ces données peuvent être utilisées dans un schéma de modélisation spatialisée pour appréhender le fonctionnement et la dynamique des agro-écosystèmes. D'un point de vue économique, l'utilisation de la télédétection offre la possibilité de réduire les coûts d'obtention de l'information à l'échelle d'une région ou d'un pays.

Notre étude a pour objectif de suivre l'évolution spatio-temporelle des surfaces d'eau et du couvert végétal dans la plaine du Haouz, en calculant les différentes indices spectraux des images Landsat (1984 ; 1986 ; 2002 ; 2009 ; 2010 et2014) et Modis (2009 ; 2010 ; 2011 ; 2012 ; 2013 et 2014) et en utilisant la technique de détection des changements de la couverture terrestre.

Nous avons fixé le mois juin comme date de référence pour toutes les images traités pour mettre l'accent sur la végétation qui pousse toute l'année et les surfaces d'eau permanentes afin de suivre leurs évolutions dans le temps et dans l'espace. Les images recueillit sont en suite calibrées et corrigées géométriquement et radiométriquement avant de passer à l'examen et l'interprétation des données.

L'examen des cartes de NDWI élaborées à partir des images Landsat, montrent un recul global des étendues d'eau dans la plaine d'environ 25% dans ces dernières 30 années.

La surface occupée par le sol fertilisé a été de l'ordre de 131,89 Km2 en 1984, après 30 ans son extension a dépassé les 767 Km2 c'est ce qui a été obtenue par l'analyse des cartes NDSI, les données de terrain et les images de NDVI révèlent également un accroissement de la végétation de 13,5 % depuis 1984 (*Fig.76*).

Fig.76 : Evolution de la végétation, sols et surface d'eau dans la plaine du Haouz depuis 1984

Les images Landsat traités ont montré que le Haouz à évoluer de 12,2% au terme de la végétation depuis 1984 jusqu'à 2009, et de 1,1% seulement de 2009 à 2014.

Les images Modis à basse résolution spatiale affirment les observations et les résultats d'analyse des images TM Landsat. Selon les images Modis, le couvert végétal s'est développé depuis 2009 jusqu'à atteindre son maximum en 2011 puis il a chuté d'environ 7,1 % en 2012 et 4,1 % en 2014.

Tab.21 : Variation de la superficie du couvert végétal dans la plaine pour les deux capteurs Modis etLandsat (2009-2014).

	Couvert végétal en (%)	Couvert végétal en (%)
	pour les images Modis	pour les images Landsat
Juin 2009	25.8	21.7
Juin 2010	29.1	22.1
Juin 2011	36.9	-
Juin 2012	29.8	-
Juin 2013	25.9	-
Juin 2014	25.7	22.8

Les résultats ainsi obtenus peuvent être expliqués par la variation de la pluviométrie qui montre une corrélation avec les indices calculés et aussi par les tentatives qui ont été mises en place dans la plaine du Haouz pour encourager l'investissement dans le domaine d'agriculture. Dès son application en 2009 le plan Maroc vert vise l'amélioration de la production et l'augmentation des surfaces agricoles dans la région, on remarque que dans les 3 premières années la superficie a connue une augmentation d'environ 11 %, mais depuis l'année 2012 on remarque une régression du couvert végétal ce qui nécessite peut être une amélioration de la stratégie adopté dans ce domaine pour qu'elle puisse supporter les enjeux climatiques et les exigences des paysans.

En fin, les objectives dressés ont été atteint par cette étude à savoir :

- Examiner les performances de détection des changements dans la zone d'étude.
- Analyses et détectés changements de la couverture de la terre depuis 1984 jusqu'à 2014.
- Développer un système de classification pour classer la couverture terrestre et établir des cartes d'occupation du sol de chaque période du temps.
- Etudier l'utilisation du NDVI, NDSI et NDWI pour analyser la détection de changement de la couverture terrestre.

Perspectives :

Pour étudier des bassins versants de taille moyenne comme celui du Tensift, il est difficile d'obtenir des séries d'images à haute résolution spatiale. De plus, le coût de ces données peut devenir prohibitif si l'on procède à la programmation systématique d'images rapprochées sur de longues périodes. Dans un contexte de gestion opérationnelle, l'utilisation des données issues des capteurs à basse résolution spatiale, gratuitement accessibles sur internet, apparaît ainsi plus adaptée. Cependant, la résolution spatiale des capteurs à large champ pose problème, car un pixel peut contenir plusieurs types de surfaces ayant des comportements spectraux différents (pixel mixte).

Afin d'établir un modèle d'évolution des surfaces d'eau et du couvert végétal dans la plaine Elhaouz, il serait judicieux de faire une étude approfondie sur la variation du signal NDVI et NDWI dans un intervalle du temps suffisant pour visualiser la fluctuation de ces indices à partir d'une série des images satellites multispectrales, ce qui permettra d'estimer la variation futur en tenant compte de plusieurs facteurs climatiques et anthropiques.

La superposition des cartes réalisées par ce travail avec d'autres cartes qui tiendront compte d'autre facteur comme l'humidité du sol, de température et d'évapotranspiration, servira d'avantage d'expliquer l'évolution de la végétation et des surfaces d'eau.

Nous recommandons également d'utiliser des images à haute résolution spatiale (Spot 1 m ou Raster 12 m) pour cibler des petites parcelles qui occupent des superficies qui ne peuvent pas être détectées par les présentes images. Ceci facilitera aussi l'élaboration d'une carte des types de végétation qui persistent dans la plaine avec plus de précision.

Il serait indispensable de confirmer sur le terrain, les résultats obtenus durant cette étude. Nous avons vérifié certains sites, en raison de la grande superficie de la plaine il restera toujours des endroits à examiner

De ce fait, il serait intéressent de répondre aux questions suivantes :

- Qu'ils sont les types de culture qui sont en voie de disparition dans la plaine ? pourquoi ? et qu'elle est la démarche nécessaire pour préserver ces cultures ?
- Pourquoi ya-t-il une régression du rendement et des surfaces cultivées depuis l'année 2012 ?
- Qu'elles sont les tentatives mises en place pour minimiser la pression sur les ressources hydriques et les surfaces d'eau ?

Enfin, il serait également utile de procéder à des études historiques, par exemple à partir de données du capteur AVHRR (archive kilométrique disponible à partir du début des années 90)

pour analyser la dynamique de l'occupation sur une plus longue période. Cette analyse permettrait de dégager des tendances à moyen terme sur l'usage des terres de la région.

La télédétection est devenue un outil de décision qu'il faut utiliser de plus en plus pour évaluer l'efficacité de certaines démarches qui ont été adoptés dans la plaine pendant plusieurs années, ce qui permet de faire des modifications à chaque fois qu'on remarque leur déficience.

Annexes :

Fig.77 : Evolution de la superficie des cultures dans la plaine Elhaouz pendant la période (2009-2014). (ORMVAH)

Fig.78 : Evolution de la superficie de certains fruits dans la plaine en 2009 (ORMVAH)

Fig.79 : Evolution de la superficie de certains fruits dans la plaine en 2014 (ORMVAH)

Satellite	Sensors	Launch	Décommission	Altitude	Inclination	Période	Repeat cycle	Crossing
		date		(Km)	(Degrees)	(Min)	(Days)	Time (a.n
Landsat 1	MSS et RBV	Juillet 23	Janvier 7	920	99.20	103.34	18	9 :30
		1972	1978					
Landsat 2	MSS et RBV	Janvier 22	Février 25	920	99.20	103.34	18	9 :30
		1975	1982					
Landsat 3	MSS et RBV	Mars 5	Mars 31	920	99.20	103.34	18	9 :30
		1978	1983					
Landsat 4	MSS et TM	Juillet 16	Juin 30	705	98.20	98.20	16	9 :45
		1982	2001					
Landsat 5	MSS et TM	Mars 1	Opérationnel	705	98.20	98.20	16	9 :45
		1984						
Landsat 6	ETM	Octobre 5	N'a pas arrivé					
		1993	L'orbite					
Landsat 7	ETM+	Avril 15	Opérationnel	705	98.20	98.20	16	10 :00
		1999						
EO-1	OLI	Novembre 2	Opérationnel	705	98.20	98.20	16	10 :01
		2000						

Tab.22 : Informations générales pour chaque Landsat satellite (USGS. <u>http://Glovis.com</u>)

		TM L5 sen	sors (Qcalı	min= 1 and (Qcalmax= 255	5)	
Bandes	Spectral	Center	Lmin	Lmax	Gain	Biais	ESUN _≹
	range	Wavelength	W/(m²	W/(m²	(W/(m ² sr	W/(m² sr	
	(µm)		sr m)	sr m)	m))/DN	m)	
1	0.45 –	0.485	-1.52	169	0.671339	-2.19	1983
	0.52						
			-1.52	193	0.765827	-2.29	
2	0.52 –	0.569	-2.84	333	1.322205	-4.16	1796
	0.60						
			-2.84	365	1.448189	-4.29	
3	0.63 –	0.660	-1.17	264	1.043976	-2.21	1536
	0.69						
4	0.76 –	0.840	-1.51	221	0.876024	-2.39	1031
	0.90						
5	1.55 –	1.676	-0.37	30.2	0.120354	-0.49	220.0
	1.75						
6	10.4 -	11.435	1.2378	15.3032	0.055376	1.18	N/A
	12.50						
7	2.08 –	2.223	-0.15	16.5	0.065551	-0.22	83.44
	2.35						

Tab.23 : la gamme spectrale du TM 5, après étalonnage des plages dynamiques, et l'irradiance solaire exo-atmosphérique (ESUNλ) (G. Chander et al, 2009)

<u>Remarque</u> : La mise à l'échelle radiométrique des coefficients pour L5 TM Bandes 1 et 2 pour les huit premières années (1984-1991) de la mission ont été modifiés afin d'optimiser la gamme dynamique et mieux préserver la sensibilité des données de la mission début. Les chiffres mis en évidence en gris sont les révisée (LMAX λ = 169, 333) et subit un postétalonnage des plages dynamiques pour L5 TM Band 1 et 2 des données acquises entre le 1er Mars 1984 (lancement), et le 31 Décembre, 1991 (*Chander et al. 2007*).

Format Example:	Ground Stations Identifiers-Data received at			
LXSPPPRRRYYYDDDGSIVV	these sites are held at EROS:			
L=Landsat	AAA = North American site unknown			
X =Sensor	ASA= Alice Springs, Australia			
S=Satellite	FUI = Fucino, Italy (Historical)			
PPP =Worldwide Reference System (WRS)	GLC= Gilmore Creek, AK, US			
Path	HOA= Hobart, Australia			
BBB -WBS Bow	KIS = Kiruna, Sweden			
	MTI= Matera, Italy			
$\mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} = \mathbf{Y} \operatorname{ear}$	EDC = Receiving site unknown			
DDD =Day of Year	PAC = Prince Albert, Canada			
GSI =Ground Station Identifier	GNC = Gatineau, Canada			
VV =Version	LGS= EROS, SD, USA, Landsat 5 data acquired			
Sensor Examples:	by EROS beginning July 1, 2001			
LM10170391976031AAA01(MSS)	MOR= Moscow, Russia			
LT40170361982320XXX08 (TM)	CHM = Chetumal, Mexico			
	XXO = Receiving site unknown			
	XXX = Receiving site unknown			

Fig.80 : La dénomination des scènes de Landsat. (Source : <u>www.USGS.Glovis.com</u>)

Fig.81 : Comparaison des bandes réfléchissantes de l'énergie solaire RSR : profils de L5 TM (G. Chander et al, 2009)

Day	d										
1	0.98331	61	0.99108	121	1.00756	181	1.01665	241	1.00992	301	0.99359
2	0.98330	62	0.99133	122	1.00781	182	1.01667	242	1.00969	302	0.99332
3	0.98330	63	0.99158	123	1.00806	183	1.01668	243	1.00946	303	0.99306
4	0.98330	64	0.99183	124	1.00831	184	1.01670	244	1.00922	304	0.99279
5	0.98330	65	0.99208	125	1.00856	185	1.01670	245	1.00898	305	0.99253
6	0.98332	66	0.99234	126	1.00880	186	1.01670	246	1.00874	306	0.99228
7	0.98333	67	0.99260	127	1.00904	187	1.01670	247	1.00850	307	0.99202
8	0.98335	68	0.99286	128	1.00928	188	1.01669	248	1.00825	308	0.99177
9	0.98338	69	0.99312	129	1.00952	189	1.01668	249	1.00800	309	0.99152
10	0.98341	70	0.99339	130	1.00975	190	1.01666	250	1.00775	310	0.99127
11	0.98345	71	0.99365	131	1.00998	191	1.01664	251	1.00750	311	0.99102
12	0.98349	72	0.99392	132	1.01020	192	1.01661	252	1.00724	312	0.99078
13	0.98354	73	0.99419	133	1.01043	193	1.01658	253	1.00698	313	0.99054
14	0.98359	74	0.99446	134	1.01065	194	1.01655	254	1.00672	314	0.99030
15	0.98365	75	0.99474	135	1.01087	195	1.01650	255	1.00646	315	0.99007
16	0.98371	76	0.99501	136	1.01108	196	1.01646	256	1.00620	316	0.98983
17	0.98378	77	0.99529	137	1.01129	197	1.01641	257	1.00593	317	0.98961
18	0.98385	78	0.99556	138	1.01150	198	1.01635	258	1.00566	318	0.98938
19	0.98393	79	0.99584	139	1.01170	199	1.01629	259	1.00539	319	0.98916
20	0.98401	80	0.99612	140	1.01191	200	1.01623	260	1.00512	320	0.98894
21	0.98410	81	0.99640	141	1.01210	201	1.01616	261	1.00485	321	0.98872
22	0.98419	82	0.99669	142	1.01230	202	1.01609	262	1.00457	322	0.98851
23	0.98428	83	0.99697	143	1.01249	203	1.01601	263	1.00430	323	0.98830
24	0.98439	84	0.99725	144	1.01267	204	1.01592	264	1.00402	324	0.98809
25	0.98449	85	0.99754	145	1.01286	205	1.01584	265	1.00374	325	0.98789
26	0.98460	86	0.99782	146	1.01304	206	1.01575	266	1.00346	326	0.98769
27	0.98472	87	0.99811	147	1.01321	207	1.01565	267	1.00318	327	0.98750
28	0.98484	88	0.99840	148	1.01338	208	1.01555	268	1.00290	328	0.98731
29	0.98496	89	0.99868	149	1.01355	209	1.01544	269	1.00262	329	0.98712
30	0.98509	90	0.99897	150	1.01371	210	1.01533	270	1.00234	330	0.98694
31	0.98523	91	0.99926	151	1.01387	211	1.01522	271	1.00205	331	0.98676
32	0.98536	92	0.99954	152	1.01403	212	1.01510	272	1.00177	332	0.98658
33	0.98551	93	0.99983	153	1.01418	213	1.01497	273	1.00148	333	0.98641
34	0.98565	94	1.00012	154	1.01433	214	1.01485	274	1.00119	334	0.98624

35	0.98580	95	1.00041	155	1.01447	215	1.01471	275	1.00091	335	0.98608
36	0.98596	96	1.00069	156	1.01461	216	1.01458	276	1.00062	336	0.98592
37	0.98612	97	1.00098	157	1.01475	217	1.01444	277	1.00033	337	0.98577
38	0.98628	98	1.00127	158	1.01488	218	1.01429	278	1.00005	338	0.98562
39	0.98645	99	1.00155	159	1.01500	219	1.01414	279	0.99976	339	0.98547
40	0.98662	100	1.00184	160	1.01513	220	1.01399	280	0.99947	340	0.98533
41	0.98680	101	1.00212	161	1.01524	221	1.01383	281	0.99918	341	0.98519
42	0.98698	102	1.00240	162	1.01536	222	1.01367	282	0.99890	342	0.98506
43	0.98717	103	1.00269	163	1.01547	223	1.01351	283	0.99861	343	0.98493
44	0.98735	104	1.00297	164	1.01557	224	1.01334	284	0.99832	344	0.98481
45	0.98755	105	1.00325	165	1.01567	225	1.01317	285	0.99804	345	0.98469
46	0.98774	106	1.00353	166	1.01577	226	1.01299	286	0.99775	346	0.98457
47	0.98794	107	1.00381	167	1.01586	227	1.01281	287	0.99747	347	0.98446
48	0.98814	108	1.00409	168	1.01595	228	1.01263	288	0.99718	348	0.98436
49	0.98835	109	1.00437	169	1.01603	229	1.01244	289	0.99690	349	0.98426
50	0.98856	110	1.00464	170	1.01610	230	1.01225	290	0.99662	350	0.98416
51	0.98877	111	1.00492	171	1.01618	231	1.01205	291	0.99634	351	0.98407
52	0.98899	112	1.00519	172	1.01625	232	1.01186	292	0.99605	352	0.98399
53	0.98921	113	1.00546	173	1.01631	233	1.01165	293	0.99577	353	0.98391
54	0.98944	114	1.00573	174	1.01637	234	1.01145	294	0.99550	354	0.98383
55	0.98966	115	1.00600	175	1.01642	235	1.01124	295	0.99522	355	0.98376
56	0.98989	116	1.00626	176	1.01647	236	1.01103	296	0.99494	356	0.98370
57	0.99012	117	1.00653	177	1.01652	237	1.01081	297	0.99467	357	0.98363
58	0.99036	118	1.00679	178	1.01656	238	1.01060	298	0.99440	358	0.98358
59	0.99060	119	1.00705	179	1.01659	239	1.01037	299	0.99412	359	0.98353
60	0.99084	120	1.00731	180	1.01662	240	1.01015	300	0.99385	360	0.98348
•	•	•	•	•	•	•	•		•	361	0 08311

Tab.24 : La distance Terre-Soleil (d) en unite astronomique pour les jours de l'année (DOY). (Nautical Almanac Office)

360	0.98348
361	0.98344
362	0.98340
363	0.98337
364	0.98335
365	0.98333
366	0.98331

Références Bibliographiques :

- Aarab E.M., (1995), GENESE ET DIFFERENCIATION D'UN MAGMA THOLEITIQUE EN DOMAINE EXTENSIF INTRACONTINENTAL: l'exemple du magmatisme prétectonique des Jebilets (Maroc hercynien). Thèse Doctorat D'état, Univ. Cadi Ayyad Marrakech, Maroc. 253 pp.
- Abourida A. (2007), APPROCHE HYDROGEOLOGIQUE DE LA PLAINE DU HAOUZ (MAROC) PAR TELEDETECTION, ISOTOPIE, SIG et MODELISATION. Thèse De Doctorat, université Cadi Ayyad, 160 pp.
- Ambroggi R. et Thuile G., (1952), HAOUZ DE MARRAKECH XIXième, Cong. Géol. International morphologies régionales, 3ème Série, Maroc, N°4, hydrologie du Maroc.
- Bernert G. et Prost J.P., (1972), LE HAOUZ DE MARRAKECH ET LE BASSIN DE MEJJATE, note et Mém. du Serv. Géol. N°231, t2, 239-432 pp.
- Bonn F., and Rochon G., (1992), PRECIS DE TELEDETECTION Volume 1 Principes et Méthodes. Universités Francophones, Presses de l'Université du Québec/AUPELF.
- **Bordonaro M., (1984)**, LA CEINTURE IBERO-MAROCAINE. Géologie structurale du district de Kettara. Thèse de 3ème cycle, Strasbourg, 89 pp.
- Chander G., & Markham B. L., (2003), REVISED LANDSAT 5 THEMATIC MAOOER REDIMETRIC CALIBRATION PROCEDURE AND POST-CALIBRATION DYNAMIC RANGES. IEEE Transactions on Geoscience and Remote Sensing, 41, 2674–2677 pp.
- Chander G., Markham B. L., & Barsi J. A., (2007), REVISED LANDSAT 5 THEMATIC MAOOER REDIMETRIC CALIBRATION. IEEE Transactions on Geoscience and Remote Sensing, 44, 490–494 pp.
- Chander G., (2009), SUMMARY OF CURRENT RADIOMETRIC CALIBRATION COEFFICIENTS FOR LANDSAT MSS, TM, ETM+, AND EO-1 ALI SENSORS, journal Science direct, Remote Sensing of Environment 113, 893–903 pp.
- Chellai E.H. et Perriaux J., (1996), EVOLUTION GEODYNAMIQUE D4UN BASSIN D'AVANT PAYS DU DOMAINE ATLASIQUE (MAROC), exemple des dépôts néogène et quaternaires du versant septentrional de l'Atlas de Marrakech. C.R Accad. Sci. Paris, t.322, Série Iia, 727-734 pp.
- Chellai E.H., (2005), EVOLUTION GEODYNAMIQUE DES CORPS SEDIMENTAIRES MESO-CENOSOIQUE DU HAUT ATLAS DE MARRAKECH, thèse Es-sci, Univ. Cady-Ayyad, Marrakech, 514 p.
- Cochet A., Hazan R. et Monition L. (1998), LE HAOUZ DE MARRAKECH BASSIN REPRÉSENTATIF D'UNE ZONE ARIDE AU CONTACT D'UNE HAUTE CHAINE MONTAGNEUSE : LE HAUT ATLAS DE CLIMAT SUBHUMIDE. Service des Ressources en Eau, Rabat.
- **Deer J. P., (1995)**, DIGITAL CHANGE DETECTION TECHNIQUES: civilian and military applications, USA, 27-33 pp.
- Duchemin B., Hadria R., Erraki S., Boulet G., Maisongrande P., Chehbouni A., Scadafal R., J. Ezzahar, J.C.B. Hoedjes, M.H. Kharrou, S. Khabba, B. Mougenot, A. Olioso, J. Rodriguez, and Simonneaux A., (2006), MONITORING WHEAT PHENOLOGY AND IRRIGATION IN

CENTRAL MOROCCO: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agricultural Water Management, 79, 1-27 pp.

- Dutour A. et Ferrandini J. (1985), NOUVELLES OBSERVATION NEOTECTONIQUE DANS LE HAUT ATLAS DE MARRAKECH ET LE HAUOZ CENTRAL (MAROC), 112 Apport sur l'évolution récente d'un segment du bâti atlasique, Revue Géol. Dyn. Géogr. Phy. 26 Fasc. 5, 286-297 pp.
- El Mandour A., (1990), ACTUALISATION DES CONAISSANCES HYDROGEOLOGIQUES DU MASSIF DES JBILET, Meseta occidentale-Maroc.
- **Er-Raki S., Chehbouni A., Guemouria N., Duchemin B., Ezzahar J., and Hadria R., (2007)**, COMBINING FAO-56 MODEL AND GROUND-BASED REMOTE SENSING TO ESTIMATE WATER CONSUMPTIONS OF WHEAT CROPS IN SEMI-ARIDE REGION. Agricultural Water Management, 87, 41-54 pp.
- Freytet P. (1984), LES SEDIMENTS LACUSTRES CARBONATES ET LEURS TRANSFORMATIONS PAR EMERSION ET PEDOGENESE, importance de leur identification pour les reconstructions paléogéographique, Bull. Centr. Rech. Explo, Elf Aquitaine, vol. 8. N°1, 223-247 pp.
- Gao, (1996), ANORMALIZED DIFFERENCE WATER INDEX FOR REMOTE SENSING OF VEGETATION LIQUIDE WATER FROM SPACE, remote sensing of yhe environnement, 257-266 pp.
- Garrigues S., (2004). HETEROGENEITE SPATIALE DES SURFACES TERRESTRES EN TELEDETECTION: Caractérisation et Influence sur l'estimation des variables biophysiques.). Thèse de l'Ecole Nationale Supérieure Agronomique de Rennes, 362 pp.
- Girard C.M., (1999), TRAITEMENT DES DONNEES DE TELEDTECTION. Edition DUNOD Paris, ISBN 2 10 004185 1, pp. 527.
- **Guessous A., (1996),** APPORT DE LA GEOPHYSIQUE APPLIQUEE A L'ETUDE HYDROGEOLOGIQUE DES ZONES FRACTUREES DE JBILET CENTRALE (MESETA MAROCAINE).
- Hanich L., Simoneaux V., Boulet G. et Chehbouni A.G., (2011), HYDROLOGIE DES BASSINS VERSANTS DU HAUT ATLAS MAROCAINE. Université Cadi Ayyad. Rapport scientifique, page 3.
- Herbei M., Dragomir L., Oncia S. (2002), USING SATELLITE IMAGES LANDSAT TM FOR CALCULING NORMALIZED DIFFERENCE INDEX FOR THE LANDSCAPE OF PARANG MOUNTAINS.
- Huvelin P., (1977), ETUDE GEOLOGIQUE ET GITOLOGIQUE DU MASSIF HERCYNIEN DES JBILET (MAROC OCCIDENTAL). Notes et Mém. Serv. Géol. Maroc, 232 bis, 1-307 pp.
- Mrini Z., (1985), AGE ET ORIGINE DES GRANITES HERCYNIENS DU MAROC, apport de la géochronologie et de la géochimie isotopique (Sr-Nb-Pb). Thèse, Uni. Clermont Ferrand II.
- Nautical Almanac Office. THE NAUTICAL ALMANAC FOR THE YEAR (United States Naval Observatory) (Washington, DC: U.S. Government Printing Office).

- Saidi M., Boukrim S., Fniguire F., Ramromi, (2012), LES ECOULEMENTS SUPERFICIELS SUR LE HAUT ATLAS DE MARRAKECH CAS DES DEBITS EXTREMES, Larhyss Journal, ISSN 1112-3680, n° 10, 75-90 pp.
- Saquanque A., (1985), DEFORMATION ET MISE EN PLACE D'UN PLUTON GRANITIQUE SYNTECTONIQUE, l'exemple du granite hercynien de Bramram-Tabouchent-Bamega, (Jebilets centrales, Maroc). Thèse de 3ème cycles, Univ. Cadi Ayyad, Marrakech Maroc.
- Sinan M. (1986), PARAMETRES HYDROGEOLOGIQUES ET GEOTECHNIQUES EN MILIEU ALLUVIAL FORTEMENT HETEROGENE : Relation statistique et approche géostatistique comparative. (Exemple de la nappe de Haouz-Maroc), thèse Uni. Des Sci. Et Tech. Du Languedoc. 397pp.
- Singh A., 1989, DIGITAL CHANGE DETECTION TECHNIQUE USING REMOTELY SENSED DATA. International Journal of Remote Sensing, 10, 989–1003.
- Takeuchi W., Yasuoka Y., (2004) DEVELOPMENT OF NORMALIZED VEGETATION, SOIL AND WATER INDICES DERIVED FROM SATELLITE REMOTE SENSING DATA (in Japanese).Jpn Soc Photogrammetry Remote Sensing 43(6):7–19. 114 pp.
- Thuillier G., Herse M., Labs S., Foujols T., Petermans W., Gillotay D., Simon P.C, & Mandel H., (2003), THE SOLAR SPECTRAL IRRADIANCE FROM 200 TO 2400 NM AS MEASURED BY SOLSPEC SPECTROMETRE FROM THE ATLAS 123 AND EURECA MISSIONS.Solar Physics, 214(1), 1–22 Solar Physics.
- **Tucker C.J., (1979),** RED AND PHOTOGRAFIC INFRARED LINEAIR COMBINAISON FOR MONITOING VEGETATION, remote sensing of the environmement, 127-150 pp.

Web_reference:

http://www.eau-tensift.net/

http://landsathandbook.gsfc.nasa.gov/data_prod/prog_sect11_3.html

http://Glovis.gov.ma

http://modis.gsfc.nasa.gov/